Annotation of rpl/lapack/lapack/zhptrd.f, revision 1.18

1.9       bertrand    1: *> \brief \b ZHPTRD
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZHPTRD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrd.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
1.15      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   D( * ), E( * )
                     29: *       COMPLEX*16         AP( * ), TAU( * )
                     30: *       ..
1.15      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
                     39: *> real symmetric tridiagonal form T by a unitary similarity
                     40: *> transformation: Q**H * A * Q = T.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] UPLO
                     47: *> \verbatim
                     48: *>          UPLO is CHARACTER*1
                     49: *>          = 'U':  Upper triangle of A is stored;
                     50: *>          = 'L':  Lower triangle of A is stored.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The order of the matrix A.  N >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in,out] AP
                     60: *> \verbatim
                     61: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     62: *>          On entry, the upper or lower triangle of the Hermitian matrix
                     63: *>          A, packed columnwise in a linear array.  The j-th column of A
                     64: *>          is stored in the array AP as follows:
                     65: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     66: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     67: *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     68: *>          of A are overwritten by the corresponding elements of the
                     69: *>          tridiagonal matrix T, and the elements above the first
                     70: *>          superdiagonal, with the array TAU, represent the unitary
                     71: *>          matrix Q as a product of elementary reflectors; if UPLO
                     72: *>          = 'L', the diagonal and first subdiagonal of A are over-
                     73: *>          written by the corresponding elements of the tridiagonal
                     74: *>          matrix T, and the elements below the first subdiagonal, with
                     75: *>          the array TAU, represent the unitary matrix Q as a product
                     76: *>          of elementary reflectors. See Further Details.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[out] D
                     80: *> \verbatim
                     81: *>          D is DOUBLE PRECISION array, dimension (N)
                     82: *>          The diagonal elements of the tridiagonal matrix T:
                     83: *>          D(i) = A(i,i).
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[out] E
                     87: *> \verbatim
                     88: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     89: *>          The off-diagonal elements of the tridiagonal matrix T:
                     90: *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[out] TAU
                     94: *> \verbatim
                     95: *>          TAU is COMPLEX*16 array, dimension (N-1)
                     96: *>          The scalar factors of the elementary reflectors (see Further
                     97: *>          Details).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[out] INFO
                    101: *> \verbatim
                    102: *>          INFO is INTEGER
                    103: *>          = 0:  successful exit
                    104: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    105: *> \endverbatim
                    106: *
                    107: *  Authors:
                    108: *  ========
                    109: *
1.15      bertrand  110: *> \author Univ. of Tennessee
                    111: *> \author Univ. of California Berkeley
                    112: *> \author Univ. of Colorado Denver
                    113: *> \author NAG Ltd.
1.9       bertrand  114: *
                    115: *> \ingroup complex16OTHERcomputational
                    116: *
                    117: *> \par Further Details:
                    118: *  =====================
                    119: *>
                    120: *> \verbatim
                    121: *>
                    122: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
                    123: *>  reflectors
                    124: *>
                    125: *>     Q = H(n-1) . . . H(2) H(1).
                    126: *>
                    127: *>  Each H(i) has the form
                    128: *>
                    129: *>     H(i) = I - tau * v * v**H
                    130: *>
                    131: *>  where tau is a complex scalar, and v is a complex vector with
                    132: *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
                    133: *>  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
                    134: *>
                    135: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
                    136: *>  reflectors
                    137: *>
                    138: *>     Q = H(1) H(2) . . . H(n-1).
                    139: *>
                    140: *>  Each H(i) has the form
                    141: *>
                    142: *>     H(i) = I - tau * v * v**H
                    143: *>
                    144: *>  where tau is a complex scalar, and v is a complex vector with
                    145: *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
                    146: *>  overwriting A(i+2:n,i), and tau is stored in TAU(i).
                    147: *> \endverbatim
                    148: *>
                    149: *  =====================================================================
1.1       bertrand  150:       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
                    151: *
1.18    ! bertrand  152: *  -- LAPACK computational routine --
1.1       bertrand  153: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    154: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    155: *
                    156: *     .. Scalar Arguments ..
                    157:       CHARACTER          UPLO
                    158:       INTEGER            INFO, N
                    159: *     ..
                    160: *     .. Array Arguments ..
                    161:       DOUBLE PRECISION   D( * ), E( * )
                    162:       COMPLEX*16         AP( * ), TAU( * )
                    163: *     ..
                    164: *
                    165: *  =====================================================================
                    166: *
                    167: *     .. Parameters ..
                    168:       COMPLEX*16         ONE, ZERO, HALF
                    169:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
                    170:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
                    171:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
                    172: *     ..
                    173: *     .. Local Scalars ..
                    174:       LOGICAL            UPPER
                    175:       INTEGER            I, I1, I1I1, II
                    176:       COMPLEX*16         ALPHA, TAUI
                    177: *     ..
                    178: *     .. External Subroutines ..
                    179:       EXTERNAL           XERBLA, ZAXPY, ZHPMV, ZHPR2, ZLARFG
                    180: *     ..
                    181: *     .. External Functions ..
                    182:       LOGICAL            LSAME
                    183:       COMPLEX*16         ZDOTC
                    184:       EXTERNAL           LSAME, ZDOTC
                    185: *     ..
                    186: *     .. Intrinsic Functions ..
                    187:       INTRINSIC          DBLE
                    188: *     ..
                    189: *     .. Executable Statements ..
                    190: *
                    191: *     Test the input parameters
                    192: *
                    193:       INFO = 0
                    194:       UPPER = LSAME( UPLO, 'U' )
                    195:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    196:          INFO = -1
                    197:       ELSE IF( N.LT.0 ) THEN
                    198:          INFO = -2
                    199:       END IF
                    200:       IF( INFO.NE.0 ) THEN
                    201:          CALL XERBLA( 'ZHPTRD', -INFO )
                    202:          RETURN
                    203:       END IF
                    204: *
                    205: *     Quick return if possible
                    206: *
                    207:       IF( N.LE.0 )
                    208:      $   RETURN
                    209: *
                    210:       IF( UPPER ) THEN
                    211: *
                    212: *        Reduce the upper triangle of A.
                    213: *        I1 is the index in AP of A(1,I+1).
                    214: *
                    215:          I1 = N*( N-1 ) / 2 + 1
                    216:          AP( I1+N-1 ) = DBLE( AP( I1+N-1 ) )
                    217:          DO 10 I = N - 1, 1, -1
                    218: *
1.8       bertrand  219: *           Generate elementary reflector H(i) = I - tau * v * v**H
1.1       bertrand  220: *           to annihilate A(1:i-1,i+1)
                    221: *
                    222:             ALPHA = AP( I1+I-1 )
                    223:             CALL ZLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
1.18    ! bertrand  224:             E( I ) = DBLE( ALPHA )
1.1       bertrand  225: *
                    226:             IF( TAUI.NE.ZERO ) THEN
                    227: *
                    228: *              Apply H(i) from both sides to A(1:i,1:i)
                    229: *
                    230:                AP( I1+I-1 ) = ONE
                    231: *
                    232: *              Compute  y := tau * A * v  storing y in TAU(1:i)
                    233: *
                    234:                CALL ZHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
                    235:      $                     1 )
                    236: *
1.8       bertrand  237: *              Compute  w := y - 1/2 * tau * (y**H *v) * v
1.1       bertrand  238: *
                    239:                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, AP( I1 ), 1 )
                    240:                CALL ZAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
                    241: *
                    242: *              Apply the transformation as a rank-2 update:
1.8       bertrand  243: *                 A := A - v * w**H - w * v**H
1.1       bertrand  244: *
                    245:                CALL ZHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
                    246: *
                    247:             END IF
                    248:             AP( I1+I-1 ) = E( I )
1.18    ! bertrand  249:             D( I+1 ) = DBLE( AP( I1+I ) )
1.1       bertrand  250:             TAU( I ) = TAUI
                    251:             I1 = I1 - I
                    252:    10    CONTINUE
1.18    ! bertrand  253:          D( 1 ) = DBLE( AP( 1 ) )
1.1       bertrand  254:       ELSE
                    255: *
                    256: *        Reduce the lower triangle of A. II is the index in AP of
                    257: *        A(i,i) and I1I1 is the index of A(i+1,i+1).
                    258: *
                    259:          II = 1
                    260:          AP( 1 ) = DBLE( AP( 1 ) )
                    261:          DO 20 I = 1, N - 1
                    262:             I1I1 = II + N - I + 1
                    263: *
1.8       bertrand  264: *           Generate elementary reflector H(i) = I - tau * v * v**H
1.1       bertrand  265: *           to annihilate A(i+2:n,i)
                    266: *
                    267:             ALPHA = AP( II+1 )
                    268:             CALL ZLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
1.18    ! bertrand  269:             E( I ) = DBLE( ALPHA )
1.1       bertrand  270: *
                    271:             IF( TAUI.NE.ZERO ) THEN
                    272: *
                    273: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
                    274: *
                    275:                AP( II+1 ) = ONE
                    276: *
                    277: *              Compute  y := tau * A * v  storing y in TAU(i:n-1)
                    278: *
                    279:                CALL ZHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
                    280:      $                     ZERO, TAU( I ), 1 )
                    281: *
1.8       bertrand  282: *              Compute  w := y - 1/2 * tau * (y**H *v) * v
1.1       bertrand  283: *
                    284:                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, AP( II+1 ),
                    285:      $                 1 )
                    286:                CALL ZAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
                    287: *
                    288: *              Apply the transformation as a rank-2 update:
1.8       bertrand  289: *                 A := A - v * w**H - w * v**H
1.1       bertrand  290: *
                    291:                CALL ZHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
                    292:      $                     AP( I1I1 ) )
                    293: *
                    294:             END IF
                    295:             AP( II+1 ) = E( I )
1.18    ! bertrand  296:             D( I ) = DBLE( AP( II ) )
1.1       bertrand  297:             TAU( I ) = TAUI
                    298:             II = I1I1
                    299:    20    CONTINUE
1.18    ! bertrand  300:          D( N ) = DBLE( AP( II ) )
1.1       bertrand  301:       END IF
                    302: *
                    303:       RETURN
                    304: *
                    305: *     End of ZHPTRD
                    306: *
                    307:       END

CVSweb interface <joel.bertrand@systella.fr>