Annotation of rpl/lapack/lapack/zhptrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       CHARACTER          UPLO
        !            10:       INTEGER            INFO, N
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   D( * ), E( * )
        !            14:       COMPLEX*16         AP( * ), TAU( * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
        !            21: *  real symmetric tridiagonal form T by a unitary similarity
        !            22: *  transformation: Q**H * A * Q = T.
        !            23: *
        !            24: *  Arguments
        !            25: *  =========
        !            26: *
        !            27: *  UPLO    (input) CHARACTER*1
        !            28: *          = 'U':  Upper triangle of A is stored;
        !            29: *          = 'L':  Lower triangle of A is stored.
        !            30: *
        !            31: *  N       (input) INTEGER
        !            32: *          The order of the matrix A.  N >= 0.
        !            33: *
        !            34: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            35: *          On entry, the upper or lower triangle of the Hermitian matrix
        !            36: *          A, packed columnwise in a linear array.  The j-th column of A
        !            37: *          is stored in the array AP as follows:
        !            38: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            39: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            40: *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
        !            41: *          of A are overwritten by the corresponding elements of the
        !            42: *          tridiagonal matrix T, and the elements above the first
        !            43: *          superdiagonal, with the array TAU, represent the unitary
        !            44: *          matrix Q as a product of elementary reflectors; if UPLO
        !            45: *          = 'L', the diagonal and first subdiagonal of A are over-
        !            46: *          written by the corresponding elements of the tridiagonal
        !            47: *          matrix T, and the elements below the first subdiagonal, with
        !            48: *          the array TAU, represent the unitary matrix Q as a product
        !            49: *          of elementary reflectors. See Further Details.
        !            50: *
        !            51: *  D       (output) DOUBLE PRECISION array, dimension (N)
        !            52: *          The diagonal elements of the tridiagonal matrix T:
        !            53: *          D(i) = A(i,i).
        !            54: *
        !            55: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
        !            56: *          The off-diagonal elements of the tridiagonal matrix T:
        !            57: *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
        !            58: *
        !            59: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
        !            60: *          The scalar factors of the elementary reflectors (see Further
        !            61: *          Details).
        !            62: *
        !            63: *  INFO    (output) INTEGER
        !            64: *          = 0:  successful exit
        !            65: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            66: *
        !            67: *  Further Details
        !            68: *  ===============
        !            69: *
        !            70: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
        !            71: *  reflectors
        !            72: *
        !            73: *     Q = H(n-1) . . . H(2) H(1).
        !            74: *
        !            75: *  Each H(i) has the form
        !            76: *
        !            77: *     H(i) = I - tau * v * v'
        !            78: *
        !            79: *  where tau is a complex scalar, and v is a complex vector with
        !            80: *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
        !            81: *  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
        !            82: *
        !            83: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
        !            84: *  reflectors
        !            85: *
        !            86: *     Q = H(1) H(2) . . . H(n-1).
        !            87: *
        !            88: *  Each H(i) has the form
        !            89: *
        !            90: *     H(i) = I - tau * v * v'
        !            91: *
        !            92: *  where tau is a complex scalar, and v is a complex vector with
        !            93: *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
        !            94: *  overwriting A(i+2:n,i), and tau is stored in TAU(i).
        !            95: *
        !            96: *  =====================================================================
        !            97: *
        !            98: *     .. Parameters ..
        !            99:       COMPLEX*16         ONE, ZERO, HALF
        !           100:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
        !           101:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
        !           102:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
        !           103: *     ..
        !           104: *     .. Local Scalars ..
        !           105:       LOGICAL            UPPER
        !           106:       INTEGER            I, I1, I1I1, II
        !           107:       COMPLEX*16         ALPHA, TAUI
        !           108: *     ..
        !           109: *     .. External Subroutines ..
        !           110:       EXTERNAL           XERBLA, ZAXPY, ZHPMV, ZHPR2, ZLARFG
        !           111: *     ..
        !           112: *     .. External Functions ..
        !           113:       LOGICAL            LSAME
        !           114:       COMPLEX*16         ZDOTC
        !           115:       EXTERNAL           LSAME, ZDOTC
        !           116: *     ..
        !           117: *     .. Intrinsic Functions ..
        !           118:       INTRINSIC          DBLE
        !           119: *     ..
        !           120: *     .. Executable Statements ..
        !           121: *
        !           122: *     Test the input parameters
        !           123: *
        !           124:       INFO = 0
        !           125:       UPPER = LSAME( UPLO, 'U' )
        !           126:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           127:          INFO = -1
        !           128:       ELSE IF( N.LT.0 ) THEN
        !           129:          INFO = -2
        !           130:       END IF
        !           131:       IF( INFO.NE.0 ) THEN
        !           132:          CALL XERBLA( 'ZHPTRD', -INFO )
        !           133:          RETURN
        !           134:       END IF
        !           135: *
        !           136: *     Quick return if possible
        !           137: *
        !           138:       IF( N.LE.0 )
        !           139:      $   RETURN
        !           140: *
        !           141:       IF( UPPER ) THEN
        !           142: *
        !           143: *        Reduce the upper triangle of A.
        !           144: *        I1 is the index in AP of A(1,I+1).
        !           145: *
        !           146:          I1 = N*( N-1 ) / 2 + 1
        !           147:          AP( I1+N-1 ) = DBLE( AP( I1+N-1 ) )
        !           148:          DO 10 I = N - 1, 1, -1
        !           149: *
        !           150: *           Generate elementary reflector H(i) = I - tau * v * v'
        !           151: *           to annihilate A(1:i-1,i+1)
        !           152: *
        !           153:             ALPHA = AP( I1+I-1 )
        !           154:             CALL ZLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
        !           155:             E( I ) = ALPHA
        !           156: *
        !           157:             IF( TAUI.NE.ZERO ) THEN
        !           158: *
        !           159: *              Apply H(i) from both sides to A(1:i,1:i)
        !           160: *
        !           161:                AP( I1+I-1 ) = ONE
        !           162: *
        !           163: *              Compute  y := tau * A * v  storing y in TAU(1:i)
        !           164: *
        !           165:                CALL ZHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
        !           166:      $                     1 )
        !           167: *
        !           168: *              Compute  w := y - 1/2 * tau * (y'*v) * v
        !           169: *
        !           170:                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, AP( I1 ), 1 )
        !           171:                CALL ZAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
        !           172: *
        !           173: *              Apply the transformation as a rank-2 update:
        !           174: *                 A := A - v * w' - w * v'
        !           175: *
        !           176:                CALL ZHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
        !           177: *
        !           178:             END IF
        !           179:             AP( I1+I-1 ) = E( I )
        !           180:             D( I+1 ) = AP( I1+I )
        !           181:             TAU( I ) = TAUI
        !           182:             I1 = I1 - I
        !           183:    10    CONTINUE
        !           184:          D( 1 ) = AP( 1 )
        !           185:       ELSE
        !           186: *
        !           187: *        Reduce the lower triangle of A. II is the index in AP of
        !           188: *        A(i,i) and I1I1 is the index of A(i+1,i+1).
        !           189: *
        !           190:          II = 1
        !           191:          AP( 1 ) = DBLE( AP( 1 ) )
        !           192:          DO 20 I = 1, N - 1
        !           193:             I1I1 = II + N - I + 1
        !           194: *
        !           195: *           Generate elementary reflector H(i) = I - tau * v * v'
        !           196: *           to annihilate A(i+2:n,i)
        !           197: *
        !           198:             ALPHA = AP( II+1 )
        !           199:             CALL ZLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
        !           200:             E( I ) = ALPHA
        !           201: *
        !           202:             IF( TAUI.NE.ZERO ) THEN
        !           203: *
        !           204: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
        !           205: *
        !           206:                AP( II+1 ) = ONE
        !           207: *
        !           208: *              Compute  y := tau * A * v  storing y in TAU(i:n-1)
        !           209: *
        !           210:                CALL ZHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
        !           211:      $                     ZERO, TAU( I ), 1 )
        !           212: *
        !           213: *              Compute  w := y - 1/2 * tau * (y'*v) * v
        !           214: *
        !           215:                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, AP( II+1 ),
        !           216:      $                 1 )
        !           217:                CALL ZAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
        !           218: *
        !           219: *              Apply the transformation as a rank-2 update:
        !           220: *                 A := A - v * w' - w * v'
        !           221: *
        !           222:                CALL ZHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
        !           223:      $                     AP( I1I1 ) )
        !           224: *
        !           225:             END IF
        !           226:             AP( II+1 ) = E( I )
        !           227:             D( I ) = AP( II )
        !           228:             TAU( I ) = TAUI
        !           229:             II = I1I1
        !           230:    20    CONTINUE
        !           231:          D( N ) = AP( II )
        !           232:       END IF
        !           233: *
        !           234:       RETURN
        !           235: *
        !           236: *     End of ZHPTRD
        !           237: *
        !           238:       END

CVSweb interface <joel.bertrand@systella.fr>