Annotation of rpl/lapack/lapack/zhpsvx.f, revision 1.17

1.9       bertrand    1: *> \brief <b> ZHPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZHPSVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpsvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpsvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpsvx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
                     22: *                          LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          FACT, UPLO
                     26: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     27: *       DOUBLE PRECISION   RCOND
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IPIV( * )
                     31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     32: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                     33: *      $                   X( LDX, * )
                     34: *       ..
1.16      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> ZHPSVX uses the diagonal pivoting factorization A = U*D*U**H or
                     43: *> A = L*D*L**H to compute the solution to a complex system of linear
                     44: *> equations A * X = B, where A is an N-by-N Hermitian matrix stored
                     45: *> in packed format and X and B are N-by-NRHS matrices.
                     46: *>
                     47: *> Error bounds on the solution and a condition estimate are also
                     48: *> provided.
                     49: *> \endverbatim
                     50: *
                     51: *> \par Description:
                     52: *  =================
                     53: *>
                     54: *> \verbatim
                     55: *>
                     56: *> The following steps are performed:
                     57: *>
                     58: *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
                     59: *>       A = U * D * U**H,  if UPLO = 'U', or
                     60: *>       A = L * D * L**H,  if UPLO = 'L',
                     61: *>    where U (or L) is a product of permutation and unit upper (lower)
                     62: *>    triangular matrices and D is Hermitian and block diagonal with
                     63: *>    1-by-1 and 2-by-2 diagonal blocks.
                     64: *>
                     65: *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
                     66: *>    returns with INFO = i. Otherwise, the factored form of A is used
                     67: *>    to estimate the condition number of the matrix A.  If the
                     68: *>    reciprocal of the condition number is less than machine precision,
                     69: *>    INFO = N+1 is returned as a warning, but the routine still goes on
                     70: *>    to solve for X and compute error bounds as described below.
                     71: *>
                     72: *> 3. The system of equations is solved for X using the factored form
                     73: *>    of A.
                     74: *>
                     75: *> 4. Iterative refinement is applied to improve the computed solution
                     76: *>    matrix and calculate error bounds and backward error estimates
                     77: *>    for it.
                     78: *> \endverbatim
                     79: *
                     80: *  Arguments:
                     81: *  ==========
                     82: *
                     83: *> \param[in] FACT
                     84: *> \verbatim
                     85: *>          FACT is CHARACTER*1
                     86: *>          Specifies whether or not the factored form of A has been
                     87: *>          supplied on entry.
                     88: *>          = 'F':  On entry, AFP and IPIV contain the factored form of
                     89: *>                  A.  AFP and IPIV will not be modified.
                     90: *>          = 'N':  The matrix A will be copied to AFP and factored.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] UPLO
                     94: *> \verbatim
                     95: *>          UPLO is CHARACTER*1
                     96: *>          = 'U':  Upper triangle of A is stored;
                     97: *>          = 'L':  Lower triangle of A is stored.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] N
                    101: *> \verbatim
                    102: *>          N is INTEGER
                    103: *>          The number of linear equations, i.e., the order of the
                    104: *>          matrix A.  N >= 0.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] NRHS
                    108: *> \verbatim
                    109: *>          NRHS is INTEGER
                    110: *>          The number of right hand sides, i.e., the number of columns
                    111: *>          of the matrices B and X.  NRHS >= 0.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] AP
                    115: *> \verbatim
                    116: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                    117: *>          The upper or lower triangle of the Hermitian matrix A, packed
                    118: *>          columnwise in a linear array.  The j-th column of A is stored
                    119: *>          in the array AP as follows:
                    120: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                    121: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                    122: *>          See below for further details.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in,out] AFP
                    126: *> \verbatim
1.11      bertrand  127: *>          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
1.9       bertrand  128: *>          If FACT = 'F', then AFP is an input argument and on entry
                    129: *>          contains the block diagonal matrix D and the multipliers used
                    130: *>          to obtain the factor U or L from the factorization
                    131: *>          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
                    132: *>          a packed triangular matrix in the same storage format as A.
                    133: *>
                    134: *>          If FACT = 'N', then AFP is an output argument and on exit
                    135: *>          contains the block diagonal matrix D and the multipliers used
                    136: *>          to obtain the factor U or L from the factorization
                    137: *>          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
                    138: *>          a packed triangular matrix in the same storage format as A.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in,out] IPIV
                    142: *> \verbatim
1.11      bertrand  143: *>          IPIV is INTEGER array, dimension (N)
1.9       bertrand  144: *>          If FACT = 'F', then IPIV is an input argument and on entry
                    145: *>          contains details of the interchanges and the block structure
                    146: *>          of D, as determined by ZHPTRF.
                    147: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    148: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
                    149: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                    150: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    151: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                    152: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                    153: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    154: *>
                    155: *>          If FACT = 'N', then IPIV is an output argument and on exit
                    156: *>          contains details of the interchanges and the block structure
                    157: *>          of D, as determined by ZHPTRF.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[in] B
                    161: *> \verbatim
                    162: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    163: *>          The N-by-NRHS right hand side matrix B.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in] LDB
                    167: *> \verbatim
                    168: *>          LDB is INTEGER
                    169: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] X
                    173: *> \verbatim
                    174: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    175: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] LDX
                    179: *> \verbatim
                    180: *>          LDX is INTEGER
                    181: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] RCOND
                    185: *> \verbatim
                    186: *>          RCOND is DOUBLE PRECISION
                    187: *>          The estimate of the reciprocal condition number of the matrix
                    188: *>          A.  If RCOND is less than the machine precision (in
                    189: *>          particular, if RCOND = 0), the matrix is singular to working
                    190: *>          precision.  This condition is indicated by a return code of
                    191: *>          INFO > 0.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] FERR
                    195: *> \verbatim
                    196: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    197: *>          The estimated forward error bound for each solution vector
                    198: *>          X(j) (the j-th column of the solution matrix X).
                    199: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    200: *>          is an estimated upper bound for the magnitude of the largest
                    201: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    202: *>          largest element in X(j).  The estimate is as reliable as
                    203: *>          the estimate for RCOND, and is almost always a slight
                    204: *>          overestimate of the true error.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[out] BERR
                    208: *> \verbatim
                    209: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    210: *>          The componentwise relative backward error of each solution
                    211: *>          vector X(j) (i.e., the smallest relative change in
                    212: *>          any element of A or B that makes X(j) an exact solution).
                    213: *> \endverbatim
                    214: *>
                    215: *> \param[out] WORK
                    216: *> \verbatim
                    217: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    218: *> \endverbatim
                    219: *>
                    220: *> \param[out] RWORK
                    221: *> \verbatim
                    222: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[out] INFO
                    226: *> \verbatim
                    227: *>          INFO is INTEGER
                    228: *>          = 0: successful exit
                    229: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    230: *>          > 0:  if INFO = i, and i is
                    231: *>                <= N:  D(i,i) is exactly zero.  The factorization
                    232: *>                       has been completed but the factor D is exactly
                    233: *>                       singular, so the solution and error bounds could
                    234: *>                       not be computed. RCOND = 0 is returned.
                    235: *>                = N+1: D is nonsingular, but RCOND is less than machine
                    236: *>                       precision, meaning that the matrix is singular
                    237: *>                       to working precision.  Nevertheless, the
                    238: *>                       solution and error bounds are computed because
                    239: *>                       there are a number of situations where the
                    240: *>                       computed solution can be more accurate than the
                    241: *>                       value of RCOND would suggest.
                    242: *> \endverbatim
                    243: *
                    244: *  Authors:
                    245: *  ========
                    246: *
1.16      bertrand  247: *> \author Univ. of Tennessee
                    248: *> \author Univ. of California Berkeley
                    249: *> \author Univ. of Colorado Denver
                    250: *> \author NAG Ltd.
1.9       bertrand  251: *
1.11      bertrand  252: *> \date April 2012
1.9       bertrand  253: *
                    254: *> \ingroup complex16OTHERsolve
                    255: *
                    256: *> \par Further Details:
                    257: *  =====================
                    258: *>
                    259: *> \verbatim
                    260: *>
                    261: *>  The packed storage scheme is illustrated by the following example
                    262: *>  when N = 4, UPLO = 'U':
                    263: *>
                    264: *>  Two-dimensional storage of the Hermitian matrix A:
                    265: *>
                    266: *>     a11 a12 a13 a14
                    267: *>         a22 a23 a24
                    268: *>             a33 a34     (aij = conjg(aji))
                    269: *>                 a44
                    270: *>
                    271: *>  Packed storage of the upper triangle of A:
                    272: *>
                    273: *>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
                    274: *> \endverbatim
                    275: *>
                    276: *  =====================================================================
1.1       bertrand  277:       SUBROUTINE ZHPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
                    278:      $                   LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
                    279: *
1.16      bertrand  280: *  -- LAPACK driver routine (version 3.7.0) --
1.1       bertrand  281: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    282: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11      bertrand  283: *     April 2012
1.1       bertrand  284: *
                    285: *     .. Scalar Arguments ..
                    286:       CHARACTER          FACT, UPLO
                    287:       INTEGER            INFO, LDB, LDX, N, NRHS
                    288:       DOUBLE PRECISION   RCOND
                    289: *     ..
                    290: *     .. Array Arguments ..
                    291:       INTEGER            IPIV( * )
                    292:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    293:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                    294:      $                   X( LDX, * )
                    295: *     ..
                    296: *
                    297: *  =====================================================================
                    298: *
                    299: *     .. Parameters ..
                    300:       DOUBLE PRECISION   ZERO
                    301:       PARAMETER          ( ZERO = 0.0D+0 )
                    302: *     ..
                    303: *     .. Local Scalars ..
                    304:       LOGICAL            NOFACT
                    305:       DOUBLE PRECISION   ANORM
                    306: *     ..
                    307: *     .. External Functions ..
                    308:       LOGICAL            LSAME
                    309:       DOUBLE PRECISION   DLAMCH, ZLANHP
                    310:       EXTERNAL           LSAME, DLAMCH, ZLANHP
                    311: *     ..
                    312: *     .. External Subroutines ..
                    313:       EXTERNAL           XERBLA, ZCOPY, ZHPCON, ZHPRFS, ZHPTRF, ZHPTRS,
                    314:      $                   ZLACPY
                    315: *     ..
                    316: *     .. Intrinsic Functions ..
                    317:       INTRINSIC          MAX
                    318: *     ..
                    319: *     .. Executable Statements ..
                    320: *
                    321: *     Test the input parameters.
                    322: *
                    323:       INFO = 0
                    324:       NOFACT = LSAME( FACT, 'N' )
                    325:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    326:          INFO = -1
                    327:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    328:      $          THEN
                    329:          INFO = -2
                    330:       ELSE IF( N.LT.0 ) THEN
                    331:          INFO = -3
                    332:       ELSE IF( NRHS.LT.0 ) THEN
                    333:          INFO = -4
                    334:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    335:          INFO = -9
                    336:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    337:          INFO = -11
                    338:       END IF
                    339:       IF( INFO.NE.0 ) THEN
                    340:          CALL XERBLA( 'ZHPSVX', -INFO )
                    341:          RETURN
                    342:       END IF
                    343: *
                    344:       IF( NOFACT ) THEN
                    345: *
1.8       bertrand  346: *        Compute the factorization A = U*D*U**H or A = L*D*L**H.
1.1       bertrand  347: *
                    348:          CALL ZCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
                    349:          CALL ZHPTRF( UPLO, N, AFP, IPIV, INFO )
                    350: *
                    351: *        Return if INFO is non-zero.
                    352: *
                    353:          IF( INFO.GT.0 )THEN
                    354:             RCOND = ZERO
                    355:             RETURN
                    356:          END IF
                    357:       END IF
                    358: *
                    359: *     Compute the norm of the matrix A.
                    360: *
                    361:       ANORM = ZLANHP( 'I', UPLO, N, AP, RWORK )
                    362: *
                    363: *     Compute the reciprocal of the condition number of A.
                    364: *
                    365:       CALL ZHPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, INFO )
                    366: *
                    367: *     Compute the solution vectors X.
                    368: *
                    369:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    370:       CALL ZHPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO )
                    371: *
                    372: *     Use iterative refinement to improve the computed solutions and
                    373: *     compute error bounds and backward error estimates for them.
                    374: *
                    375:       CALL ZHPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
                    376:      $             BERR, WORK, RWORK, INFO )
                    377: *
                    378: *     Set INFO = N+1 if the matrix is singular to working precision.
                    379: *
                    380:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    381:      $   INFO = N + 1
                    382: *
                    383:       RETURN
                    384: *
                    385: *     End of ZHPSVX
                    386: *
                    387:       END

CVSweb interface <joel.bertrand@systella.fr>