Annotation of rpl/lapack/lapack/zhpsvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
        !             2:      $                   LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          FACT, UPLO
        !            11:       INTEGER            INFO, LDB, LDX, N, NRHS
        !            12:       DOUBLE PRECISION   RCOND
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       INTEGER            IPIV( * )
        !            16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
        !            17:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
        !            18:      $                   X( LDX, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZHPSVX uses the diagonal pivoting factorization A = U*D*U**H or
        !            25: *  A = L*D*L**H to compute the solution to a complex system of linear
        !            26: *  equations A * X = B, where A is an N-by-N Hermitian matrix stored
        !            27: *  in packed format and X and B are N-by-NRHS matrices.
        !            28: *
        !            29: *  Error bounds on the solution and a condition estimate are also
        !            30: *  provided.
        !            31: *
        !            32: *  Description
        !            33: *  ===========
        !            34: *
        !            35: *  The following steps are performed:
        !            36: *
        !            37: *  1. If FACT = 'N', the diagonal pivoting method is used to factor A as
        !            38: *        A = U * D * U**H,  if UPLO = 'U', or
        !            39: *        A = L * D * L**H,  if UPLO = 'L',
        !            40: *     where U (or L) is a product of permutation and unit upper (lower)
        !            41: *     triangular matrices and D is Hermitian and block diagonal with
        !            42: *     1-by-1 and 2-by-2 diagonal blocks.
        !            43: *
        !            44: *  2. If some D(i,i)=0, so that D is exactly singular, then the routine
        !            45: *     returns with INFO = i. Otherwise, the factored form of A is used
        !            46: *     to estimate the condition number of the matrix A.  If the
        !            47: *     reciprocal of the condition number is less than machine precision,
        !            48: *     INFO = N+1 is returned as a warning, but the routine still goes on
        !            49: *     to solve for X and compute error bounds as described below.
        !            50: *
        !            51: *  3. The system of equations is solved for X using the factored form
        !            52: *     of A.
        !            53: *
        !            54: *  4. Iterative refinement is applied to improve the computed solution
        !            55: *     matrix and calculate error bounds and backward error estimates
        !            56: *     for it.
        !            57: *
        !            58: *  Arguments
        !            59: *  =========
        !            60: *
        !            61: *  FACT    (input) CHARACTER*1
        !            62: *          Specifies whether or not the factored form of A has been
        !            63: *          supplied on entry.
        !            64: *          = 'F':  On entry, AFP and IPIV contain the factored form of
        !            65: *                  A.  AFP and IPIV will not be modified.
        !            66: *          = 'N':  The matrix A will be copied to AFP and factored.
        !            67: *
        !            68: *  UPLO    (input) CHARACTER*1
        !            69: *          = 'U':  Upper triangle of A is stored;
        !            70: *          = 'L':  Lower triangle of A is stored.
        !            71: *
        !            72: *  N       (input) INTEGER
        !            73: *          The number of linear equations, i.e., the order of the
        !            74: *          matrix A.  N >= 0.
        !            75: *
        !            76: *  NRHS    (input) INTEGER
        !            77: *          The number of right hand sides, i.e., the number of columns
        !            78: *          of the matrices B and X.  NRHS >= 0.
        !            79: *
        !            80: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            81: *          The upper or lower triangle of the Hermitian matrix A, packed
        !            82: *          columnwise in a linear array.  The j-th column of A is stored
        !            83: *          in the array AP as follows:
        !            84: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            85: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            86: *          See below for further details.
        !            87: *
        !            88: *  AFP     (input or output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            89: *          If FACT = 'F', then AFP is an input argument and on entry
        !            90: *          contains the block diagonal matrix D and the multipliers used
        !            91: *          to obtain the factor U or L from the factorization
        !            92: *          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
        !            93: *          a packed triangular matrix in the same storage format as A.
        !            94: *
        !            95: *          If FACT = 'N', then AFP is an output argument and on exit
        !            96: *          contains the block diagonal matrix D and the multipliers used
        !            97: *          to obtain the factor U or L from the factorization
        !            98: *          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
        !            99: *          a packed triangular matrix in the same storage format as A.
        !           100: *
        !           101: *  IPIV    (input or output) INTEGER array, dimension (N)
        !           102: *          If FACT = 'F', then IPIV is an input argument and on entry
        !           103: *          contains details of the interchanges and the block structure
        !           104: *          of D, as determined by ZHPTRF.
        !           105: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
        !           106: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
        !           107: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
        !           108: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
        !           109: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
        !           110: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
        !           111: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !           112: *
        !           113: *          If FACT = 'N', then IPIV is an output argument and on exit
        !           114: *          contains details of the interchanges and the block structure
        !           115: *          of D, as determined by ZHPTRF.
        !           116: *
        !           117: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
        !           118: *          The N-by-NRHS right hand side matrix B.
        !           119: *
        !           120: *  LDB     (input) INTEGER
        !           121: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           122: *
        !           123: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
        !           124: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
        !           125: *
        !           126: *  LDX     (input) INTEGER
        !           127: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           128: *
        !           129: *  RCOND   (output) DOUBLE PRECISION
        !           130: *          The estimate of the reciprocal condition number of the matrix
        !           131: *          A.  If RCOND is less than the machine precision (in
        !           132: *          particular, if RCOND = 0), the matrix is singular to working
        !           133: *          precision.  This condition is indicated by a return code of
        !           134: *          INFO > 0.
        !           135: *
        !           136: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           137: *          The estimated forward error bound for each solution vector
        !           138: *          X(j) (the j-th column of the solution matrix X).
        !           139: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           140: *          is an estimated upper bound for the magnitude of the largest
        !           141: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           142: *          largest element in X(j).  The estimate is as reliable as
        !           143: *          the estimate for RCOND, and is almost always a slight
        !           144: *          overestimate of the true error.
        !           145: *
        !           146: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           147: *          The componentwise relative backward error of each solution
        !           148: *          vector X(j) (i.e., the smallest relative change in
        !           149: *          any element of A or B that makes X(j) an exact solution).
        !           150: *
        !           151: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           152: *
        !           153: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           154: *
        !           155: *  INFO    (output) INTEGER
        !           156: *          = 0: successful exit
        !           157: *          < 0: if INFO = -i, the i-th argument had an illegal value
        !           158: *          > 0:  if INFO = i, and i is
        !           159: *                <= N:  D(i,i) is exactly zero.  The factorization
        !           160: *                       has been completed but the factor D is exactly
        !           161: *                       singular, so the solution and error bounds could
        !           162: *                       not be computed. RCOND = 0 is returned.
        !           163: *                = N+1: D is nonsingular, but RCOND is less than machine
        !           164: *                       precision, meaning that the matrix is singular
        !           165: *                       to working precision.  Nevertheless, the
        !           166: *                       solution and error bounds are computed because
        !           167: *                       there are a number of situations where the
        !           168: *                       computed solution can be more accurate than the
        !           169: *                       value of RCOND would suggest.
        !           170: *
        !           171: *  Further Details
        !           172: *  ===============
        !           173: *
        !           174: *  The packed storage scheme is illustrated by the following example
        !           175: *  when N = 4, UPLO = 'U':
        !           176: *
        !           177: *  Two-dimensional storage of the Hermitian matrix A:
        !           178: *
        !           179: *     a11 a12 a13 a14
        !           180: *         a22 a23 a24
        !           181: *             a33 a34     (aij = conjg(aji))
        !           182: *                 a44
        !           183: *
        !           184: *  Packed storage of the upper triangle of A:
        !           185: *
        !           186: *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
        !           187: *
        !           188: *  =====================================================================
        !           189: *
        !           190: *     .. Parameters ..
        !           191:       DOUBLE PRECISION   ZERO
        !           192:       PARAMETER          ( ZERO = 0.0D+0 )
        !           193: *     ..
        !           194: *     .. Local Scalars ..
        !           195:       LOGICAL            NOFACT
        !           196:       DOUBLE PRECISION   ANORM
        !           197: *     ..
        !           198: *     .. External Functions ..
        !           199:       LOGICAL            LSAME
        !           200:       DOUBLE PRECISION   DLAMCH, ZLANHP
        !           201:       EXTERNAL           LSAME, DLAMCH, ZLANHP
        !           202: *     ..
        !           203: *     .. External Subroutines ..
        !           204:       EXTERNAL           XERBLA, ZCOPY, ZHPCON, ZHPRFS, ZHPTRF, ZHPTRS,
        !           205:      $                   ZLACPY
        !           206: *     ..
        !           207: *     .. Intrinsic Functions ..
        !           208:       INTRINSIC          MAX
        !           209: *     ..
        !           210: *     .. Executable Statements ..
        !           211: *
        !           212: *     Test the input parameters.
        !           213: *
        !           214:       INFO = 0
        !           215:       NOFACT = LSAME( FACT, 'N' )
        !           216:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
        !           217:          INFO = -1
        !           218:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
        !           219:      $          THEN
        !           220:          INFO = -2
        !           221:       ELSE IF( N.LT.0 ) THEN
        !           222:          INFO = -3
        !           223:       ELSE IF( NRHS.LT.0 ) THEN
        !           224:          INFO = -4
        !           225:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           226:          INFO = -9
        !           227:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           228:          INFO = -11
        !           229:       END IF
        !           230:       IF( INFO.NE.0 ) THEN
        !           231:          CALL XERBLA( 'ZHPSVX', -INFO )
        !           232:          RETURN
        !           233:       END IF
        !           234: *
        !           235:       IF( NOFACT ) THEN
        !           236: *
        !           237: *        Compute the factorization A = U*D*U' or A = L*D*L'.
        !           238: *
        !           239:          CALL ZCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
        !           240:          CALL ZHPTRF( UPLO, N, AFP, IPIV, INFO )
        !           241: *
        !           242: *        Return if INFO is non-zero.
        !           243: *
        !           244:          IF( INFO.GT.0 )THEN
        !           245:             RCOND = ZERO
        !           246:             RETURN
        !           247:          END IF
        !           248:       END IF
        !           249: *
        !           250: *     Compute the norm of the matrix A.
        !           251: *
        !           252:       ANORM = ZLANHP( 'I', UPLO, N, AP, RWORK )
        !           253: *
        !           254: *     Compute the reciprocal of the condition number of A.
        !           255: *
        !           256:       CALL ZHPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, INFO )
        !           257: *
        !           258: *     Compute the solution vectors X.
        !           259: *
        !           260:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           261:       CALL ZHPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO )
        !           262: *
        !           263: *     Use iterative refinement to improve the computed solutions and
        !           264: *     compute error bounds and backward error estimates for them.
        !           265: *
        !           266:       CALL ZHPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
        !           267:      $             BERR, WORK, RWORK, INFO )
        !           268: *
        !           269: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           270: *
        !           271:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           272:      $   INFO = N + 1
        !           273: *
        !           274:       RETURN
        !           275: *
        !           276: *     End of ZHPSVX
        !           277: *
        !           278:       END

CVSweb interface <joel.bertrand@systella.fr>