Annotation of rpl/lapack/lapack/zhprfs.f, revision 1.10

1.9       bertrand    1: *> \brief \b ZHPRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHPRFS + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhprfs.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhprfs.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhprfs.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
                     22: *                          FERR, BERR, WORK, RWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     31: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                     32: *      $                   X( LDX, * )
                     33: *       ..
                     34: *  
                     35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZHPRFS improves the computed solution to a system of linear
                     42: *> equations when the coefficient matrix is Hermitian indefinite
                     43: *> and packed, and provides error bounds and backward error estimates
                     44: *> for the solution.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] UPLO
                     51: *> \verbatim
                     52: *>          UPLO is CHARACTER*1
                     53: *>          = 'U':  Upper triangle of A is stored;
                     54: *>          = 'L':  Lower triangle of A is stored.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] N
                     58: *> \verbatim
                     59: *>          N is INTEGER
                     60: *>          The order of the matrix A.  N >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] NRHS
                     64: *> \verbatim
                     65: *>          NRHS is INTEGER
                     66: *>          The number of right hand sides, i.e., the number of columns
                     67: *>          of the matrices B and X.  NRHS >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] AP
                     71: *> \verbatim
                     72: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     73: *>          The upper or lower triangle of the Hermitian matrix A, packed
                     74: *>          columnwise in a linear array.  The j-th column of A is stored
                     75: *>          in the array AP as follows:
                     76: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     77: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] AFP
                     81: *> \verbatim
                     82: *>          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     83: *>          The factored form of the matrix A.  AFP contains the block
                     84: *>          diagonal matrix D and the multipliers used to obtain the
                     85: *>          factor U or L from the factorization A = U*D*U**H or
                     86: *>          A = L*D*L**H as computed by ZHPTRF, stored as a packed
                     87: *>          triangular matrix.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] IPIV
                     91: *> \verbatim
                     92: *>          IPIV is INTEGER array, dimension (N)
                     93: *>          Details of the interchanges and the block structure of D
                     94: *>          as determined by ZHPTRF.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] B
                     98: *> \verbatim
                     99: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    100: *>          The right hand side matrix B.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDB
                    104: *> \verbatim
                    105: *>          LDB is INTEGER
                    106: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in,out] X
                    110: *> \verbatim
                    111: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    112: *>          On entry, the solution matrix X, as computed by ZHPTRS.
                    113: *>          On exit, the improved solution matrix X.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDX
                    117: *> \verbatim
                    118: *>          LDX is INTEGER
                    119: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] FERR
                    123: *> \verbatim
                    124: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    125: *>          The estimated forward error bound for each solution vector
                    126: *>          X(j) (the j-th column of the solution matrix X).
                    127: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    128: *>          is an estimated upper bound for the magnitude of the largest
                    129: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    130: *>          largest element in X(j).  The estimate is as reliable as
                    131: *>          the estimate for RCOND, and is almost always a slight
                    132: *>          overestimate of the true error.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] BERR
                    136: *> \verbatim
                    137: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    138: *>          The componentwise relative backward error of each solution
                    139: *>          vector X(j) (i.e., the smallest relative change in
                    140: *>          any element of A or B that makes X(j) an exact solution).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[out] WORK
                    144: *> \verbatim
                    145: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] RWORK
                    149: *> \verbatim
                    150: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] INFO
                    154: *> \verbatim
                    155: *>          INFO is INTEGER
                    156: *>          = 0:  successful exit
                    157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    158: *> \endverbatim
                    159: *
                    160: *> \par Internal Parameters:
                    161: *  =========================
                    162: *>
                    163: *> \verbatim
                    164: *>  ITMAX is the maximum number of steps of iterative refinement.
                    165: *> \endverbatim
                    166: *
                    167: *  Authors:
                    168: *  ========
                    169: *
                    170: *> \author Univ. of Tennessee 
                    171: *> \author Univ. of California Berkeley 
                    172: *> \author Univ. of Colorado Denver 
                    173: *> \author NAG Ltd. 
                    174: *
                    175: *> \date November 2011
                    176: *
                    177: *> \ingroup complex16OTHERcomputational
                    178: *
                    179: *  =====================================================================
1.1       bertrand  180:       SUBROUTINE ZHPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
                    181:      $                   FERR, BERR, WORK, RWORK, INFO )
                    182: *
1.9       bertrand  183: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  186: *     November 2011
1.1       bertrand  187: *
                    188: *     .. Scalar Arguments ..
                    189:       CHARACTER          UPLO
                    190:       INTEGER            INFO, LDB, LDX, N, NRHS
                    191: *     ..
                    192: *     .. Array Arguments ..
                    193:       INTEGER            IPIV( * )
                    194:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    195:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                    196:      $                   X( LDX, * )
                    197: *     ..
                    198: *
                    199: *  =====================================================================
                    200: *
                    201: *     .. Parameters ..
                    202:       INTEGER            ITMAX
                    203:       PARAMETER          ( ITMAX = 5 )
                    204:       DOUBLE PRECISION   ZERO
                    205:       PARAMETER          ( ZERO = 0.0D+0 )
                    206:       COMPLEX*16         ONE
                    207:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    208:       DOUBLE PRECISION   TWO
                    209:       PARAMETER          ( TWO = 2.0D+0 )
                    210:       DOUBLE PRECISION   THREE
                    211:       PARAMETER          ( THREE = 3.0D+0 )
                    212: *     ..
                    213: *     .. Local Scalars ..
                    214:       LOGICAL            UPPER
                    215:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
                    216:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    217:       COMPLEX*16         ZDUM
                    218: *     ..
                    219: *     .. Local Arrays ..
                    220:       INTEGER            ISAVE( 3 )
                    221: *     ..
                    222: *     .. External Subroutines ..
                    223:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHPMV, ZHPTRS, ZLACN2
                    224: *     ..
                    225: *     .. Intrinsic Functions ..
                    226:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    227: *     ..
                    228: *     .. External Functions ..
                    229:       LOGICAL            LSAME
                    230:       DOUBLE PRECISION   DLAMCH
                    231:       EXTERNAL           LSAME, DLAMCH
                    232: *     ..
                    233: *     .. Statement Functions ..
                    234:       DOUBLE PRECISION   CABS1
                    235: *     ..
                    236: *     .. Statement Function definitions ..
                    237:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    238: *     ..
                    239: *     .. Executable Statements ..
                    240: *
                    241: *     Test the input parameters.
                    242: *
                    243:       INFO = 0
                    244:       UPPER = LSAME( UPLO, 'U' )
                    245:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    246:          INFO = -1
                    247:       ELSE IF( N.LT.0 ) THEN
                    248:          INFO = -2
                    249:       ELSE IF( NRHS.LT.0 ) THEN
                    250:          INFO = -3
                    251:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    252:          INFO = -8
                    253:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    254:          INFO = -10
                    255:       END IF
                    256:       IF( INFO.NE.0 ) THEN
                    257:          CALL XERBLA( 'ZHPRFS', -INFO )
                    258:          RETURN
                    259:       END IF
                    260: *
                    261: *     Quick return if possible
                    262: *
                    263:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    264:          DO 10 J = 1, NRHS
                    265:             FERR( J ) = ZERO
                    266:             BERR( J ) = ZERO
                    267:    10    CONTINUE
                    268:          RETURN
                    269:       END IF
                    270: *
                    271: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    272: *
                    273:       NZ = N + 1
                    274:       EPS = DLAMCH( 'Epsilon' )
                    275:       SAFMIN = DLAMCH( 'Safe minimum' )
                    276:       SAFE1 = NZ*SAFMIN
                    277:       SAFE2 = SAFE1 / EPS
                    278: *
                    279: *     Do for each right hand side
                    280: *
                    281:       DO 140 J = 1, NRHS
                    282: *
                    283:          COUNT = 1
                    284:          LSTRES = THREE
                    285:    20    CONTINUE
                    286: *
                    287: *        Loop until stopping criterion is satisfied.
                    288: *
                    289: *        Compute residual R = B - A * X
                    290: *
                    291:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    292:          CALL ZHPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK, 1 )
                    293: *
                    294: *        Compute componentwise relative backward error from formula
                    295: *
                    296: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    297: *
                    298: *        where abs(Z) is the componentwise absolute value of the matrix
                    299: *        or vector Z.  If the i-th component of the denominator is less
                    300: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    301: *        numerator and denominator before dividing.
                    302: *
                    303:          DO 30 I = 1, N
                    304:             RWORK( I ) = CABS1( B( I, J ) )
                    305:    30    CONTINUE
                    306: *
                    307: *        Compute abs(A)*abs(X) + abs(B).
                    308: *
                    309:          KK = 1
                    310:          IF( UPPER ) THEN
                    311:             DO 50 K = 1, N
                    312:                S = ZERO
                    313:                XK = CABS1( X( K, J ) )
                    314:                IK = KK
                    315:                DO 40 I = 1, K - 1
                    316:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    317:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    318:                   IK = IK + 1
                    319:    40          CONTINUE
                    320:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK+K-1 ) ) )*
                    321:      $                      XK + S
                    322:                KK = KK + K
                    323:    50       CONTINUE
                    324:          ELSE
                    325:             DO 70 K = 1, N
                    326:                S = ZERO
                    327:                XK = CABS1( X( K, J ) )
                    328:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK ) ) )*XK
                    329:                IK = KK + 1
                    330:                DO 60 I = K + 1, N
                    331:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    332:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    333:                   IK = IK + 1
                    334:    60          CONTINUE
                    335:                RWORK( K ) = RWORK( K ) + S
                    336:                KK = KK + ( N-K+1 )
                    337:    70       CONTINUE
                    338:          END IF
                    339:          S = ZERO
                    340:          DO 80 I = 1, N
                    341:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    342:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    343:             ELSE
                    344:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    345:      $             ( RWORK( I )+SAFE1 ) )
                    346:             END IF
                    347:    80    CONTINUE
                    348:          BERR( J ) = S
                    349: *
                    350: *        Test stopping criterion. Continue iterating if
                    351: *           1) The residual BERR(J) is larger than machine epsilon, and
                    352: *           2) BERR(J) decreased by at least a factor of 2 during the
                    353: *              last iteration, and
                    354: *           3) At most ITMAX iterations tried.
                    355: *
                    356:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    357:      $       COUNT.LE.ITMAX ) THEN
                    358: *
                    359: *           Update solution and try again.
                    360: *
                    361:             CALL ZHPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    362:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    363:             LSTRES = BERR( J )
                    364:             COUNT = COUNT + 1
                    365:             GO TO 20
                    366:          END IF
                    367: *
                    368: *        Bound error from formula
                    369: *
                    370: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    371: *        norm( abs(inv(A))*
                    372: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    373: *
                    374: *        where
                    375: *          norm(Z) is the magnitude of the largest component of Z
                    376: *          inv(A) is the inverse of A
                    377: *          abs(Z) is the componentwise absolute value of the matrix or
                    378: *             vector Z
                    379: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    380: *          EPS is machine epsilon
                    381: *
                    382: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    383: *        is incremented by SAFE1 if the i-th component of
                    384: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    385: *
                    386: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    387: *           inv(A) * diag(W),
                    388: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    389: *
                    390:          DO 90 I = 1, N
                    391:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    392:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    393:             ELSE
                    394:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    395:      $                      SAFE1
                    396:             END IF
                    397:    90    CONTINUE
                    398: *
                    399:          KASE = 0
                    400:   100    CONTINUE
                    401:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    402:          IF( KASE.NE.0 ) THEN
                    403:             IF( KASE.EQ.1 ) THEN
                    404: *
1.8       bertrand  405: *              Multiply by diag(W)*inv(A**H).
1.1       bertrand  406: *
                    407:                CALL ZHPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    408:                DO 110 I = 1, N
                    409:                   WORK( I ) = RWORK( I )*WORK( I )
                    410:   110          CONTINUE
                    411:             ELSE IF( KASE.EQ.2 ) THEN
                    412: *
                    413: *              Multiply by inv(A)*diag(W).
                    414: *
                    415:                DO 120 I = 1, N
                    416:                   WORK( I ) = RWORK( I )*WORK( I )
                    417:   120          CONTINUE
                    418:                CALL ZHPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    419:             END IF
                    420:             GO TO 100
                    421:          END IF
                    422: *
                    423: *        Normalize error.
                    424: *
                    425:          LSTRES = ZERO
                    426:          DO 130 I = 1, N
                    427:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    428:   130    CONTINUE
                    429:          IF( LSTRES.NE.ZERO )
                    430:      $      FERR( J ) = FERR( J ) / LSTRES
                    431: *
                    432:   140 CONTINUE
                    433: *
                    434:       RETURN
                    435: *
                    436: *     End of ZHPRFS
                    437: *
                    438:       END

CVSweb interface <joel.bertrand@systella.fr>