File:  [local] / rpl / lapack / lapack / zhpgvx.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:26 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHPGVX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPGVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgvx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgvx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgvx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
   22: *                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
   23: *                          IWORK, IFAIL, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZHPGVX computes selected eigenvalues and, optionally, eigenvectors
   43: *> of a complex generalized Hermitian-definite eigenproblem, of the form
   44: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
   45: *> B are assumed to be Hermitian, stored in packed format, and B is also
   46: *> positive definite.  Eigenvalues and eigenvectors can be selected by
   47: *> specifying either a range of values or a range of indices for the
   48: *> desired eigenvalues.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] ITYPE
   55: *> \verbatim
   56: *>          ITYPE is INTEGER
   57: *>          Specifies the problem type to be solved:
   58: *>          = 1:  A*x = (lambda)*B*x
   59: *>          = 2:  A*B*x = (lambda)*x
   60: *>          = 3:  B*A*x = (lambda)*x
   61: *> \endverbatim
   62: *>
   63: *> \param[in] JOBZ
   64: *> \verbatim
   65: *>          JOBZ is CHARACTER*1
   66: *>          = 'N':  Compute eigenvalues only;
   67: *>          = 'V':  Compute eigenvalues and eigenvectors.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] RANGE
   71: *> \verbatim
   72: *>          RANGE is CHARACTER*1
   73: *>          = 'A': all eigenvalues will be found;
   74: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   75: *>                 will be found;
   76: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] UPLO
   80: *> \verbatim
   81: *>          UPLO is CHARACTER*1
   82: *>          = 'U':  Upper triangles of A and B are stored;
   83: *>          = 'L':  Lower triangles of A and B are stored.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] N
   87: *> \verbatim
   88: *>          N is INTEGER
   89: *>          The order of the matrices A and B.  N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] AP
   93: *> \verbatim
   94: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   95: *>          On entry, the upper or lower triangle of the Hermitian matrix
   96: *>          A, packed columnwise in a linear array.  The j-th column of A
   97: *>          is stored in the array AP as follows:
   98: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   99: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  100: *>
  101: *>          On exit, the contents of AP are destroyed.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] BP
  105: *> \verbatim
  106: *>          BP is COMPLEX*16 array, dimension (N*(N+1)/2)
  107: *>          On entry, the upper or lower triangle of the Hermitian matrix
  108: *>          B, packed columnwise in a linear array.  The j-th column of B
  109: *>          is stored in the array BP as follows:
  110: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  111: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  112: *>
  113: *>          On exit, the triangular factor U or L from the Cholesky
  114: *>          factorization B = U**H*U or B = L*L**H, in the same storage
  115: *>          format as B.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] VL
  119: *> \verbatim
  120: *>          VL is DOUBLE PRECISION
  121: *>
  122: *>          If RANGE='V', the lower bound of the interval to
  123: *>          be searched for eigenvalues. VL < VU.
  124: *>          Not referenced if RANGE = 'A' or 'I'.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] VU
  128: *> \verbatim
  129: *>          VU is DOUBLE PRECISION
  130: *>
  131: *>          If RANGE='V', the upper bound of the interval to
  132: *>          be searched for eigenvalues. VL < VU.
  133: *>          Not referenced if RANGE = 'A' or 'I'.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IL
  137: *> \verbatim
  138: *>          IL is INTEGER
  139: *>
  140: *>          If RANGE='I', the index of the
  141: *>          smallest eigenvalue to be returned.
  142: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  143: *>          Not referenced if RANGE = 'A' or 'V'.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] IU
  147: *> \verbatim
  148: *>          IU is INTEGER
  149: *>
  150: *>          If RANGE='I', the index of the
  151: *>          largest eigenvalue to be returned.
  152: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  153: *>          Not referenced if RANGE = 'A' or 'V'.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] ABSTOL
  157: *> \verbatim
  158: *>          ABSTOL is DOUBLE PRECISION
  159: *>          The absolute error tolerance for the eigenvalues.
  160: *>          An approximate eigenvalue is accepted as converged
  161: *>          when it is determined to lie in an interval [a,b]
  162: *>          of width less than or equal to
  163: *>
  164: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  165: *>
  166: *>          where EPS is the machine precision.  If ABSTOL is less than
  167: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  168: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  169: *>          by reducing AP to tridiagonal form.
  170: *>
  171: *>          Eigenvalues will be computed most accurately when ABSTOL is
  172: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  173: *>          If this routine returns with INFO>0, indicating that some
  174: *>          eigenvectors did not converge, try setting ABSTOL to
  175: *>          2*DLAMCH('S').
  176: *> \endverbatim
  177: *>
  178: *> \param[out] M
  179: *> \verbatim
  180: *>          M is INTEGER
  181: *>          The total number of eigenvalues found.  0 <= M <= N.
  182: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  183: *> \endverbatim
  184: *>
  185: *> \param[out] W
  186: *> \verbatim
  187: *>          W is DOUBLE PRECISION array, dimension (N)
  188: *>          On normal exit, the first M elements contain the selected
  189: *>          eigenvalues in ascending order.
  190: *> \endverbatim
  191: *>
  192: *> \param[out] Z
  193: *> \verbatim
  194: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
  195: *>          If JOBZ = 'N', then Z is not referenced.
  196: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  197: *>          contain the orthonormal eigenvectors of the matrix A
  198: *>          corresponding to the selected eigenvalues, with the i-th
  199: *>          column of Z holding the eigenvector associated with W(i).
  200: *>          The eigenvectors are normalized as follows:
  201: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
  202: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
  203: *>
  204: *>          If an eigenvector fails to converge, then that column of Z
  205: *>          contains the latest approximation to the eigenvector, and the
  206: *>          index of the eigenvector is returned in IFAIL.
  207: *>          Note: the user must ensure that at least max(1,M) columns are
  208: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  209: *>          is not known in advance and an upper bound must be used.
  210: *> \endverbatim
  211: *>
  212: *> \param[in] LDZ
  213: *> \verbatim
  214: *>          LDZ is INTEGER
  215: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  216: *>          JOBZ = 'V', LDZ >= max(1,N).
  217: *> \endverbatim
  218: *>
  219: *> \param[out] WORK
  220: *> \verbatim
  221: *>          WORK is COMPLEX*16 array, dimension (2*N)
  222: *> \endverbatim
  223: *>
  224: *> \param[out] RWORK
  225: *> \verbatim
  226: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  227: *> \endverbatim
  228: *>
  229: *> \param[out] IWORK
  230: *> \verbatim
  231: *>          IWORK is INTEGER array, dimension (5*N)
  232: *> \endverbatim
  233: *>
  234: *> \param[out] IFAIL
  235: *> \verbatim
  236: *>          IFAIL is INTEGER array, dimension (N)
  237: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  238: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  239: *>          indices of the eigenvectors that failed to converge.
  240: *>          If JOBZ = 'N', then IFAIL is not referenced.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit
  247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  248: *>          > 0:  ZPPTRF or ZHPEVX returned an error code:
  249: *>             <= N:  if INFO = i, ZHPEVX failed to converge;
  250: *>                    i eigenvectors failed to converge.  Their indices
  251: *>                    are stored in array IFAIL.
  252: *>             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
  253: *>                    minor of order i of B is not positive definite.
  254: *>                    The factorization of B could not be completed and
  255: *>                    no eigenvalues or eigenvectors were computed.
  256: *> \endverbatim
  257: *
  258: *  Authors:
  259: *  ========
  260: *
  261: *> \author Univ. of Tennessee
  262: *> \author Univ. of California Berkeley
  263: *> \author Univ. of Colorado Denver
  264: *> \author NAG Ltd.
  265: *
  266: *> \ingroup complex16OTHEReigen
  267: *
  268: *> \par Contributors:
  269: *  ==================
  270: *>
  271: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  272: *
  273: *  =====================================================================
  274:       SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
  275:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
  276:      $                   IWORK, IFAIL, INFO )
  277: *
  278: *  -- LAPACK driver routine --
  279: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  280: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  281: *
  282: *     .. Scalar Arguments ..
  283:       CHARACTER          JOBZ, RANGE, UPLO
  284:       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
  285:       DOUBLE PRECISION   ABSTOL, VL, VU
  286: *     ..
  287: *     .. Array Arguments ..
  288:       INTEGER            IFAIL( * ), IWORK( * )
  289:       DOUBLE PRECISION   RWORK( * ), W( * )
  290:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
  291: *     ..
  292: *
  293: *  =====================================================================
  294: *
  295: *     .. Local Scalars ..
  296:       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
  297:       CHARACTER          TRANS
  298:       INTEGER            J
  299: *     ..
  300: *     .. External Functions ..
  301:       LOGICAL            LSAME
  302:       EXTERNAL           LSAME
  303: *     ..
  304: *     .. External Subroutines ..
  305:       EXTERNAL           XERBLA, ZHPEVX, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
  306: *     ..
  307: *     .. Intrinsic Functions ..
  308:       INTRINSIC          MIN
  309: *     ..
  310: *     .. Executable Statements ..
  311: *
  312: *     Test the input parameters.
  313: *
  314:       WANTZ = LSAME( JOBZ, 'V' )
  315:       UPPER = LSAME( UPLO, 'U' )
  316:       ALLEIG = LSAME( RANGE, 'A' )
  317:       VALEIG = LSAME( RANGE, 'V' )
  318:       INDEIG = LSAME( RANGE, 'I' )
  319: *
  320:       INFO = 0
  321:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  322:          INFO = -1
  323:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  324:          INFO = -2
  325:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  326:          INFO = -3
  327:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  328:          INFO = -4
  329:       ELSE IF( N.LT.0 ) THEN
  330:          INFO = -5
  331:       ELSE
  332:          IF( VALEIG ) THEN
  333:             IF( N.GT.0 .AND. VU.LE.VL ) THEN
  334:                INFO = -9
  335:             END IF
  336:          ELSE IF( INDEIG ) THEN
  337:             IF( IL.LT.1 ) THEN
  338:                INFO = -10
  339:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  340:                INFO = -11
  341:             END IF
  342:          END IF
  343:       END IF
  344:       IF( INFO.EQ.0 ) THEN
  345:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  346:             INFO = -16
  347:          END IF
  348:       END IF
  349: *
  350:       IF( INFO.NE.0 ) THEN
  351:          CALL XERBLA( 'ZHPGVX', -INFO )
  352:          RETURN
  353:       END IF
  354: *
  355: *     Quick return if possible
  356: *
  357:       IF( N.EQ.0 )
  358:      $   RETURN
  359: *
  360: *     Form a Cholesky factorization of B.
  361: *
  362:       CALL ZPPTRF( UPLO, N, BP, INFO )
  363:       IF( INFO.NE.0 ) THEN
  364:          INFO = N + INFO
  365:          RETURN
  366:       END IF
  367: *
  368: *     Transform problem to standard eigenvalue problem and solve.
  369: *
  370:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  371:       CALL ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
  372:      $             W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
  373: *
  374:       IF( WANTZ ) THEN
  375: *
  376: *        Backtransform eigenvectors to the original problem.
  377: *
  378:          IF( INFO.GT.0 )
  379:      $      M = INFO - 1
  380:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  381: *
  382: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  383: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
  384: *
  385:             IF( UPPER ) THEN
  386:                TRANS = 'N'
  387:             ELSE
  388:                TRANS = 'C'
  389:             END IF
  390: *
  391:             DO 10 J = 1, M
  392:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  393:      $                     1 )
  394:    10       CONTINUE
  395: *
  396:          ELSE IF( ITYPE.EQ.3 ) THEN
  397: *
  398: *           For B*A*x=(lambda)*x;
  399: *           backtransform eigenvectors: x = L*y or U**H *y
  400: *
  401:             IF( UPPER ) THEN
  402:                TRANS = 'C'
  403:             ELSE
  404:                TRANS = 'N'
  405:             END IF
  406: *
  407:             DO 20 J = 1, M
  408:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  409:      $                     1 )
  410:    20       CONTINUE
  411:          END IF
  412:       END IF
  413: *
  414:       RETURN
  415: *
  416: *     End of ZHPGVX
  417: *
  418:       END

CVSweb interface <joel.bertrand@systella.fr>