Annotation of rpl/lapack/lapack/zhpgvx.f, revision 1.16

1.14      bertrand    1: *> \brief \b ZHPGVX
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHPGVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgvx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgvx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgvx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
                     22: *                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
                     23: *                          IWORK, IFAIL, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
                     28: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IFAIL( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     33: *       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
                     34: *       ..
                     35: *  
                     36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> ZHPGVX computes selected eigenvalues and, optionally, eigenvectors
                     43: *> of a complex generalized Hermitian-definite eigenproblem, of the form
                     44: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     45: *> B are assumed to be Hermitian, stored in packed format, and B is also
                     46: *> positive definite.  Eigenvalues and eigenvectors can be selected by
                     47: *> specifying either a range of values or a range of indices for the
                     48: *> desired eigenvalues.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] ITYPE
                     55: *> \verbatim
                     56: *>          ITYPE is INTEGER
                     57: *>          Specifies the problem type to be solved:
                     58: *>          = 1:  A*x = (lambda)*B*x
                     59: *>          = 2:  A*B*x = (lambda)*x
                     60: *>          = 3:  B*A*x = (lambda)*x
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] JOBZ
                     64: *> \verbatim
                     65: *>          JOBZ is CHARACTER*1
                     66: *>          = 'N':  Compute eigenvalues only;
                     67: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] RANGE
                     71: *> \verbatim
                     72: *>          RANGE is CHARACTER*1
                     73: *>          = 'A': all eigenvalues will be found;
                     74: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     75: *>                 will be found;
                     76: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] UPLO
                     80: *> \verbatim
                     81: *>          UPLO is CHARACTER*1
                     82: *>          = 'U':  Upper triangles of A and B are stored;
                     83: *>          = 'L':  Lower triangles of A and B are stored.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] N
                     87: *> \verbatim
                     88: *>          N is INTEGER
                     89: *>          The order of the matrices A and B.  N >= 0.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in,out] AP
                     93: *> \verbatim
                     94: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     95: *>          On entry, the upper or lower triangle of the Hermitian matrix
                     96: *>          A, packed columnwise in a linear array.  The j-th column of A
                     97: *>          is stored in the array AP as follows:
                     98: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     99: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                    100: *>
                    101: *>          On exit, the contents of AP are destroyed.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in,out] BP
                    105: *> \verbatim
                    106: *>          BP is COMPLEX*16 array, dimension (N*(N+1)/2)
                    107: *>          On entry, the upper or lower triangle of the Hermitian matrix
                    108: *>          B, packed columnwise in a linear array.  The j-th column of B
                    109: *>          is stored in the array BP as follows:
                    110: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                    111: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
                    112: *>
                    113: *>          On exit, the triangular factor U or L from the Cholesky
                    114: *>          factorization B = U**H*U or B = L*L**H, in the same storage
                    115: *>          format as B.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] VL
                    119: *> \verbatim
                    120: *>          VL is DOUBLE PRECISION
1.15      bertrand  121: *>
                    122: *>          If RANGE='V', the lower bound of the interval to
                    123: *>          be searched for eigenvalues. VL < VU.
                    124: *>          Not referenced if RANGE = 'A' or 'I'.
1.9       bertrand  125: *> \endverbatim
                    126: *>
                    127: *> \param[in] VU
                    128: *> \verbatim
                    129: *>          VU is DOUBLE PRECISION
                    130: *>
1.15      bertrand  131: *>          If RANGE='V', the upper bound of the interval to
1.9       bertrand  132: *>          be searched for eigenvalues. VL < VU.
                    133: *>          Not referenced if RANGE = 'A' or 'I'.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] IL
                    137: *> \verbatim
                    138: *>          IL is INTEGER
1.15      bertrand  139: *>
                    140: *>          If RANGE='I', the index of the
                    141: *>          smallest eigenvalue to be returned.
                    142: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    143: *>          Not referenced if RANGE = 'A' or 'V'.
1.9       bertrand  144: *> \endverbatim
                    145: *>
                    146: *> \param[in] IU
                    147: *> \verbatim
                    148: *>          IU is INTEGER
                    149: *>
1.15      bertrand  150: *>          If RANGE='I', the index of the
                    151: *>          largest eigenvalue to be returned.
1.9       bertrand  152: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    153: *>          Not referenced if RANGE = 'A' or 'V'.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in] ABSTOL
                    157: *> \verbatim
                    158: *>          ABSTOL is DOUBLE PRECISION
                    159: *>          The absolute error tolerance for the eigenvalues.
                    160: *>          An approximate eigenvalue is accepted as converged
                    161: *>          when it is determined to lie in an interval [a,b]
                    162: *>          of width less than or equal to
                    163: *>
                    164: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    165: *>
                    166: *>          where EPS is the machine precision.  If ABSTOL is less than
                    167: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    168: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    169: *>          by reducing AP to tridiagonal form.
                    170: *>
                    171: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    172: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    173: *>          If this routine returns with INFO>0, indicating that some
                    174: *>          eigenvectors did not converge, try setting ABSTOL to
                    175: *>          2*DLAMCH('S').
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] M
                    179: *> \verbatim
                    180: *>          M is INTEGER
                    181: *>          The total number of eigenvalues found.  0 <= M <= N.
                    182: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] W
                    186: *> \verbatim
                    187: *>          W is DOUBLE PRECISION array, dimension (N)
                    188: *>          On normal exit, the first M elements contain the selected
                    189: *>          eigenvalues in ascending order.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[out] Z
                    193: *> \verbatim
                    194: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
                    195: *>          If JOBZ = 'N', then Z is not referenced.
                    196: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    197: *>          contain the orthonormal eigenvectors of the matrix A
                    198: *>          corresponding to the selected eigenvalues, with the i-th
                    199: *>          column of Z holding the eigenvector associated with W(i).
                    200: *>          The eigenvectors are normalized as follows:
                    201: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
                    202: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
                    203: *>
                    204: *>          If an eigenvector fails to converge, then that column of Z
                    205: *>          contains the latest approximation to the eigenvector, and the
                    206: *>          index of the eigenvector is returned in IFAIL.
                    207: *>          Note: the user must ensure that at least max(1,M) columns are
                    208: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    209: *>          is not known in advance and an upper bound must be used.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[in] LDZ
                    213: *> \verbatim
                    214: *>          LDZ is INTEGER
                    215: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    216: *>          JOBZ = 'V', LDZ >= max(1,N).
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[out] WORK
                    220: *> \verbatim
                    221: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    222: *> \endverbatim
                    223: *>
                    224: *> \param[out] RWORK
                    225: *> \verbatim
                    226: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] IWORK
                    230: *> \verbatim
                    231: *>          IWORK is INTEGER array, dimension (5*N)
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[out] IFAIL
                    235: *> \verbatim
                    236: *>          IFAIL is INTEGER array, dimension (N)
                    237: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    238: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    239: *>          indices of the eigenvectors that failed to converge.
                    240: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    241: *> \endverbatim
                    242: *>
                    243: *> \param[out] INFO
                    244: *> \verbatim
                    245: *>          INFO is INTEGER
                    246: *>          = 0:  successful exit
                    247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    248: *>          > 0:  ZPPTRF or ZHPEVX returned an error code:
                    249: *>             <= N:  if INFO = i, ZHPEVX failed to converge;
                    250: *>                    i eigenvectors failed to converge.  Their indices
                    251: *>                    are stored in array IFAIL.
                    252: *>             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                    253: *>                    minor of order i of B is not positive definite.
                    254: *>                    The factorization of B could not be completed and
                    255: *>                    no eigenvalues or eigenvectors were computed.
                    256: *> \endverbatim
                    257: *
                    258: *  Authors:
                    259: *  ========
                    260: *
                    261: *> \author Univ. of Tennessee 
                    262: *> \author Univ. of California Berkeley 
                    263: *> \author Univ. of Colorado Denver 
                    264: *> \author NAG Ltd. 
                    265: *
1.15      bertrand  266: *> \date June 2016
1.9       bertrand  267: *
                    268: *> \ingroup complex16OTHEReigen
                    269: *
                    270: *> \par Contributors:
                    271: *  ==================
                    272: *>
                    273: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    274: *
                    275: *  =====================================================================
1.1       bertrand  276:       SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
                    277:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
                    278:      $                   IWORK, IFAIL, INFO )
                    279: *
1.15      bertrand  280: *  -- LAPACK driver routine (version 3.6.1) --
1.1       bertrand  281: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    282: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  283: *     June 2016
1.1       bertrand  284: *
                    285: *     .. Scalar Arguments ..
                    286:       CHARACTER          JOBZ, RANGE, UPLO
                    287:       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
                    288:       DOUBLE PRECISION   ABSTOL, VL, VU
                    289: *     ..
                    290: *     .. Array Arguments ..
                    291:       INTEGER            IFAIL( * ), IWORK( * )
                    292:       DOUBLE PRECISION   RWORK( * ), W( * )
                    293:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
                    294: *     ..
                    295: *
                    296: *  =====================================================================
                    297: *
                    298: *     .. Local Scalars ..
                    299:       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
                    300:       CHARACTER          TRANS
                    301:       INTEGER            J
                    302: *     ..
                    303: *     .. External Functions ..
                    304:       LOGICAL            LSAME
                    305:       EXTERNAL           LSAME
                    306: *     ..
                    307: *     .. External Subroutines ..
                    308:       EXTERNAL           XERBLA, ZHPEVX, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
                    309: *     ..
                    310: *     .. Intrinsic Functions ..
                    311:       INTRINSIC          MIN
                    312: *     ..
                    313: *     .. Executable Statements ..
                    314: *
                    315: *     Test the input parameters.
                    316: *
                    317:       WANTZ = LSAME( JOBZ, 'V' )
                    318:       UPPER = LSAME( UPLO, 'U' )
                    319:       ALLEIG = LSAME( RANGE, 'A' )
                    320:       VALEIG = LSAME( RANGE, 'V' )
                    321:       INDEIG = LSAME( RANGE, 'I' )
                    322: *
                    323:       INFO = 0
                    324:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    325:          INFO = -1
                    326:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    327:          INFO = -2
                    328:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    329:          INFO = -3
                    330:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    331:          INFO = -4
                    332:       ELSE IF( N.LT.0 ) THEN
                    333:          INFO = -5
                    334:       ELSE 
                    335:          IF( VALEIG ) THEN
                    336:             IF( N.GT.0 .AND. VU.LE.VL ) THEN
                    337:                INFO = -9
                    338:             END IF
                    339:          ELSE IF( INDEIG ) THEN
                    340:             IF( IL.LT.1 ) THEN
                    341:                INFO = -10
                    342:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    343:                INFO = -11
                    344:             END IF
                    345:          END IF
                    346:       END IF
                    347:       IF( INFO.EQ.0 ) THEN
                    348:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    349:             INFO = -16
                    350:          END IF
                    351:       END IF
                    352: *
                    353:       IF( INFO.NE.0 ) THEN
                    354:          CALL XERBLA( 'ZHPGVX', -INFO )
                    355:          RETURN
                    356:       END IF
                    357: *
                    358: *     Quick return if possible
                    359: *
                    360:       IF( N.EQ.0 )
                    361:      $   RETURN
                    362: *
                    363: *     Form a Cholesky factorization of B.
                    364: *
                    365:       CALL ZPPTRF( UPLO, N, BP, INFO )
                    366:       IF( INFO.NE.0 ) THEN
                    367:          INFO = N + INFO
                    368:          RETURN
                    369:       END IF
                    370: *
                    371: *     Transform problem to standard eigenvalue problem and solve.
                    372: *
                    373:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    374:       CALL ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
                    375:      $             W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
                    376: *
                    377:       IF( WANTZ ) THEN
                    378: *
                    379: *        Backtransform eigenvectors to the original problem.
                    380: *
                    381:          IF( INFO.GT.0 )
                    382:      $      M = INFO - 1
                    383:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    384: *
                    385: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  386: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
1.1       bertrand  387: *
                    388:             IF( UPPER ) THEN
                    389:                TRANS = 'N'
                    390:             ELSE
                    391:                TRANS = 'C'
                    392:             END IF
                    393: *
                    394:             DO 10 J = 1, M
                    395:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    396:      $                     1 )
                    397:    10       CONTINUE
                    398: *
                    399:          ELSE IF( ITYPE.EQ.3 ) THEN
                    400: *
                    401: *           For B*A*x=(lambda)*x;
1.8       bertrand  402: *           backtransform eigenvectors: x = L*y or U**H *y
1.1       bertrand  403: *
                    404:             IF( UPPER ) THEN
                    405:                TRANS = 'C'
                    406:             ELSE
                    407:                TRANS = 'N'
                    408:             END IF
                    409: *
                    410:             DO 20 J = 1, M
                    411:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    412:      $                     1 )
                    413:    20       CONTINUE
                    414:          END IF
                    415:       END IF
                    416: *
                    417:       RETURN
                    418: *
                    419: *     End of ZHPGVX
                    420: *
                    421:       END

CVSweb interface <joel.bertrand@systella.fr>