File:  [local] / rpl / lapack / lapack / zhpgvd.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:48 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZHPGST
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHPGVD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgvd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgvd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgvd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
   22: *                          LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBZ, UPLO
   26: *       INTEGER            INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   RWORK( * ), W( * )
   31: *       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
   41: *> of a complex generalized Hermitian-definite eigenproblem, of the form
   42: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
   43: *> B are assumed to be Hermitian, stored in packed format, and B is also
   44: *> positive definite.
   45: *> If eigenvectors are desired, it uses a divide and conquer algorithm.
   46: *>
   47: *> The divide and conquer algorithm makes very mild assumptions about
   48: *> floating point arithmetic. It will work on machines with a guard
   49: *> digit in add/subtract, or on those binary machines without guard
   50: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   51: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   52: *> without guard digits, but we know of none.
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] ITYPE
   59: *> \verbatim
   60: *>          ITYPE is INTEGER
   61: *>          Specifies the problem type to be solved:
   62: *>          = 1:  A*x = (lambda)*B*x
   63: *>          = 2:  A*B*x = (lambda)*x
   64: *>          = 3:  B*A*x = (lambda)*x
   65: *> \endverbatim
   66: *>
   67: *> \param[in] JOBZ
   68: *> \verbatim
   69: *>          JOBZ is CHARACTER*1
   70: *>          = 'N':  Compute eigenvalues only;
   71: *>          = 'V':  Compute eigenvalues and eigenvectors.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] UPLO
   75: *> \verbatim
   76: *>          UPLO is CHARACTER*1
   77: *>          = 'U':  Upper triangles of A and B are stored;
   78: *>          = 'L':  Lower triangles of A and B are stored.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] N
   82: *> \verbatim
   83: *>          N is INTEGER
   84: *>          The order of the matrices A and B.  N >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] AP
   88: *> \verbatim
   89: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   90: *>          On entry, the upper or lower triangle of the Hermitian matrix
   91: *>          A, packed columnwise in a linear array.  The j-th column of A
   92: *>          is stored in the array AP as follows:
   93: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   94: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   95: *>
   96: *>          On exit, the contents of AP are destroyed.
   97: *> \endverbatim
   98: *>
   99: *> \param[in,out] BP
  100: *> \verbatim
  101: *>          BP is COMPLEX*16 array, dimension (N*(N+1)/2)
  102: *>          On entry, the upper or lower triangle of the Hermitian matrix
  103: *>          B, packed columnwise in a linear array.  The j-th column of B
  104: *>          is stored in the array BP as follows:
  105: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  106: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  107: *>
  108: *>          On exit, the triangular factor U or L from the Cholesky
  109: *>          factorization B = U**H*U or B = L*L**H, in the same storage
  110: *>          format as B.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] W
  114: *> \verbatim
  115: *>          W is DOUBLE PRECISION array, dimension (N)
  116: *>          If INFO = 0, the eigenvalues in ascending order.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] Z
  120: *> \verbatim
  121: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
  122: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  123: *>          eigenvectors.  The eigenvectors are normalized as follows:
  124: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
  125: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
  126: *>          If JOBZ = 'N', then Z is not referenced.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] LDZ
  130: *> \verbatim
  131: *>          LDZ is INTEGER
  132: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  133: *>          JOBZ = 'V', LDZ >= max(1,N).
  134: *> \endverbatim
  135: *>
  136: *> \param[out] WORK
  137: *> \verbatim
  138: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  139: *>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LWORK
  143: *> \verbatim
  144: *>          LWORK is INTEGER
  145: *>          The dimension of the array WORK.
  146: *>          If N <= 1,               LWORK >= 1.
  147: *>          If JOBZ = 'N' and N > 1, LWORK >= N.
  148: *>          If JOBZ = 'V' and N > 1, LWORK >= 2*N.
  149: *>
  150: *>          If LWORK = -1, then a workspace query is assumed; the routine
  151: *>          only calculates the required sizes of the WORK, RWORK and
  152: *>          IWORK arrays, returns these values as the first entries of
  153: *>          the WORK, RWORK and IWORK arrays, and no error message
  154: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  155: *> \endverbatim
  156: *>
  157: *> \param[out] RWORK
  158: *> \verbatim
  159: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  160: *>          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
  161: *> \endverbatim
  162: *>
  163: *> \param[in] LRWORK
  164: *> \verbatim
  165: *>          LRWORK is INTEGER
  166: *>          The dimension of array RWORK.
  167: *>          If N <= 1,               LRWORK >= 1.
  168: *>          If JOBZ = 'N' and N > 1, LRWORK >= N.
  169: *>          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
  170: *>
  171: *>          If LRWORK = -1, then a workspace query is assumed; the
  172: *>          routine only calculates the required sizes of the WORK, RWORK
  173: *>          and IWORK arrays, returns these values as the first entries
  174: *>          of the WORK, RWORK and IWORK arrays, and no error message
  175: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  176: *> \endverbatim
  177: *>
  178: *> \param[out] IWORK
  179: *> \verbatim
  180: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  181: *>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] LIWORK
  185: *> \verbatim
  186: *>          LIWORK is INTEGER
  187: *>          The dimension of array IWORK.
  188: *>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
  189: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
  190: *>
  191: *>          If LIWORK = -1, then a workspace query is assumed; the
  192: *>          routine only calculates the required sizes of the WORK, RWORK
  193: *>          and IWORK arrays, returns these values as the first entries
  194: *>          of the WORK, RWORK and IWORK arrays, and no error message
  195: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  196: *> \endverbatim
  197: *>
  198: *> \param[out] INFO
  199: *> \verbatim
  200: *>          INFO is INTEGER
  201: *>          = 0:  successful exit
  202: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  203: *>          > 0:  ZPPTRF or ZHPEVD returned an error code:
  204: *>             <= N:  if INFO = i, ZHPEVD failed to converge;
  205: *>                    i off-diagonal elements of an intermediate
  206: *>                    tridiagonal form did not convergeto zero;
  207: *>             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
  208: *>                    minor of order i of B is not positive definite.
  209: *>                    The factorization of B could not be completed and
  210: *>                    no eigenvalues or eigenvectors were computed.
  211: *> \endverbatim
  212: *
  213: *  Authors:
  214: *  ========
  215: *
  216: *> \author Univ. of Tennessee 
  217: *> \author Univ. of California Berkeley 
  218: *> \author Univ. of Colorado Denver 
  219: *> \author NAG Ltd. 
  220: *
  221: *> \date November 2011
  222: *
  223: *> \ingroup complex16OTHEReigen
  224: *
  225: *> \par Contributors:
  226: *  ==================
  227: *>
  228: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  229: *
  230: *  =====================================================================
  231:       SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  232:      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  233: *
  234: *  -- LAPACK driver routine (version 3.4.0) --
  235: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  236: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  237: *     November 2011
  238: *
  239: *     .. Scalar Arguments ..
  240:       CHARACTER          JOBZ, UPLO
  241:       INTEGER            INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
  242: *     ..
  243: *     .. Array Arguments ..
  244:       INTEGER            IWORK( * )
  245:       DOUBLE PRECISION   RWORK( * ), W( * )
  246:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
  247: *     ..
  248: *
  249: *  =====================================================================
  250: *
  251: *     .. Local Scalars ..
  252:       LOGICAL            LQUERY, UPPER, WANTZ
  253:       CHARACTER          TRANS
  254:       INTEGER            J, LIWMIN, LRWMIN, LWMIN, NEIG
  255: *     ..
  256: *     .. External Functions ..
  257:       LOGICAL            LSAME
  258:       EXTERNAL           LSAME
  259: *     ..
  260: *     .. External Subroutines ..
  261:       EXTERNAL           XERBLA, ZHPEVD, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
  262: *     ..
  263: *     .. Intrinsic Functions ..
  264:       INTRINSIC          DBLE, MAX
  265: *     ..
  266: *     .. Executable Statements ..
  267: *
  268: *     Test the input parameters.
  269: *
  270:       WANTZ = LSAME( JOBZ, 'V' )
  271:       UPPER = LSAME( UPLO, 'U' )
  272:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  273: *
  274:       INFO = 0
  275:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  276:          INFO = -1
  277:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  278:          INFO = -2
  279:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  280:          INFO = -3
  281:       ELSE IF( N.LT.0 ) THEN
  282:          INFO = -4
  283:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  284:          INFO = -9
  285:       END IF
  286: *
  287:       IF( INFO.EQ.0 ) THEN
  288:          IF( N.LE.1 ) THEN
  289:             LWMIN = 1
  290:             LIWMIN = 1
  291:             LRWMIN = 1
  292:          ELSE
  293:             IF( WANTZ ) THEN
  294:                LWMIN = 2*N
  295:                LRWMIN = 1 + 5*N + 2*N**2
  296:                LIWMIN = 3 + 5*N
  297:             ELSE
  298:                LWMIN = N
  299:                LRWMIN = N
  300:                LIWMIN = 1
  301:             END IF
  302:          END IF
  303: *
  304:          WORK( 1 ) = LWMIN
  305:          RWORK( 1 ) = LRWMIN
  306:          IWORK( 1 ) = LIWMIN
  307:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  308:             INFO = -11
  309:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  310:             INFO = -13
  311:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  312:             INFO = -15
  313:          END IF
  314:       END IF
  315: *
  316:       IF( INFO.NE.0 ) THEN
  317:          CALL XERBLA( 'ZHPGVD', -INFO )
  318:          RETURN
  319:       ELSE IF( LQUERY ) THEN
  320:          RETURN
  321:       END IF
  322: *
  323: *     Quick return if possible
  324: *
  325:       IF( N.EQ.0 )
  326:      $   RETURN
  327: *
  328: *     Form a Cholesky factorization of B.
  329: *
  330:       CALL ZPPTRF( UPLO, N, BP, INFO )
  331:       IF( INFO.NE.0 ) THEN
  332:          INFO = N + INFO
  333:          RETURN
  334:       END IF
  335: *
  336: *     Transform problem to standard eigenvalue problem and solve.
  337: *
  338:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  339:       CALL ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
  340:      $             LRWORK, IWORK, LIWORK, INFO )
  341:       LWMIN = MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) )
  342:       LRWMIN = MAX( DBLE( LRWMIN ), DBLE( RWORK( 1 ) ) )
  343:       LIWMIN = MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
  344: *
  345:       IF( WANTZ ) THEN
  346: *
  347: *        Backtransform eigenvectors to the original problem.
  348: *
  349:          NEIG = N
  350:          IF( INFO.GT.0 )
  351:      $      NEIG = INFO - 1
  352:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  353: *
  354: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  355: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
  356: *
  357:             IF( UPPER ) THEN
  358:                TRANS = 'N'
  359:             ELSE
  360:                TRANS = 'C'
  361:             END IF
  362: *
  363:             DO 10 J = 1, NEIG
  364:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  365:      $                     1 )
  366:    10       CONTINUE
  367: *
  368:          ELSE IF( ITYPE.EQ.3 ) THEN
  369: *
  370: *           For B*A*x=(lambda)*x;
  371: *           backtransform eigenvectors: x = L*y or U**H *y
  372: *
  373:             IF( UPPER ) THEN
  374:                TRANS = 'C'
  375:             ELSE
  376:                TRANS = 'N'
  377:             END IF
  378: *
  379:             DO 20 J = 1, NEIG
  380:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  381:      $                     1 )
  382:    20       CONTINUE
  383:          END IF
  384:       END IF
  385: *
  386:       WORK( 1 ) = LWMIN
  387:       RWORK( 1 ) = LRWMIN
  388:       IWORK( 1 ) = LIWMIN
  389:       RETURN
  390: *
  391: *     End of ZHPGVD
  392: *
  393:       END

CVSweb interface <joel.bertrand@systella.fr>