Annotation of rpl/lapack/lapack/zhpgvd.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
                      2:      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   RWORK( * ), W( * )
                     16:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
                     23: *  of a complex generalized Hermitian-definite eigenproblem, of the form
                     24: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     25: *  B are assumed to be Hermitian, stored in packed format, and B is also
                     26: *  positive definite.
                     27: *  If eigenvectors are desired, it uses a divide and conquer algorithm.
                     28: *
                     29: *  The divide and conquer algorithm makes very mild assumptions about
                     30: *  floating point arithmetic. It will work on machines with a guard
                     31: *  digit in add/subtract, or on those binary machines without guard
                     32: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     33: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     34: *  without guard digits, but we know of none.
                     35: *
                     36: *  Arguments
                     37: *  =========
                     38: *
                     39: *  ITYPE   (input) INTEGER
                     40: *          Specifies the problem type to be solved:
                     41: *          = 1:  A*x = (lambda)*B*x
                     42: *          = 2:  A*B*x = (lambda)*x
                     43: *          = 3:  B*A*x = (lambda)*x
                     44: *
                     45: *  JOBZ    (input) CHARACTER*1
                     46: *          = 'N':  Compute eigenvalues only;
                     47: *          = 'V':  Compute eigenvalues and eigenvectors.
                     48: *
                     49: *  UPLO    (input) CHARACTER*1
                     50: *          = 'U':  Upper triangles of A and B are stored;
                     51: *          = 'L':  Lower triangles of A and B are stored.
                     52: *
                     53: *  N       (input) INTEGER
                     54: *          The order of the matrices A and B.  N >= 0.
                     55: *
                     56: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
                     57: *          On entry, the upper or lower triangle of the Hermitian matrix
                     58: *          A, packed columnwise in a linear array.  The j-th column of A
                     59: *          is stored in the array AP as follows:
                     60: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     61: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     62: *
                     63: *          On exit, the contents of AP are destroyed.
                     64: *
                     65: *  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
                     66: *          On entry, the upper or lower triangle of the Hermitian matrix
                     67: *          B, packed columnwise in a linear array.  The j-th column of B
                     68: *          is stored in the array BP as follows:
                     69: *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     70: *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
                     71: *
                     72: *          On exit, the triangular factor U or L from the Cholesky
                     73: *          factorization B = U**H*U or B = L*L**H, in the same storage
                     74: *          format as B.
                     75: *
                     76: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     77: *          If INFO = 0, the eigenvalues in ascending order.
                     78: *
                     79: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
                     80: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     81: *          eigenvectors.  The eigenvectors are normalized as follows:
                     82: *          if ITYPE = 1 or 2, Z**H*B*Z = I;
                     83: *          if ITYPE = 3, Z**H*inv(B)*Z = I.
                     84: *          If JOBZ = 'N', then Z is not referenced.
                     85: *
                     86: *  LDZ     (input) INTEGER
                     87: *          The leading dimension of the array Z.  LDZ >= 1, and if
                     88: *          JOBZ = 'V', LDZ >= max(1,N).
                     89: *
                     90: *  WORK    (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     91: *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
                     92: *
                     93: *  LWORK   (input) INTEGER
                     94: *          The dimension of array WORK.
                     95: *          If N <= 1,               LWORK >= 1.
                     96: *          If JOBZ = 'N' and N > 1, LWORK >= N.
                     97: *          If JOBZ = 'V' and N > 1, LWORK >= 2*N.
                     98: *
                     99: *          If LWORK = -1, then a workspace query is assumed; the routine
                    100: *          only calculates the required sizes of the WORK, RWORK and
                    101: *          IWORK arrays, returns these values as the first entries of
                    102: *          the WORK, RWORK and IWORK arrays, and no error message
                    103: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    104: *
                    105: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
                    106: *          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
                    107: *
                    108: *  LRWORK  (input) INTEGER
                    109: *          The dimension of array RWORK.
                    110: *          If N <= 1,               LRWORK >= 1.
                    111: *          If JOBZ = 'N' and N > 1, LRWORK >= N.
                    112: *          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
                    113: *
                    114: *          If LRWORK = -1, then a workspace query is assumed; the
                    115: *          routine only calculates the required sizes of the WORK, RWORK
                    116: *          and IWORK arrays, returns these values as the first entries
                    117: *          of the WORK, RWORK and IWORK arrays, and no error message
                    118: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    119: *
                    120: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    121: *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
                    122: *
                    123: *  LIWORK  (input) INTEGER
                    124: *          The dimension of array IWORK.
                    125: *          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
                    126: *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
                    127: *
                    128: *          If LIWORK = -1, then a workspace query is assumed; the
                    129: *          routine only calculates the required sizes of the WORK, RWORK
                    130: *          and IWORK arrays, returns these values as the first entries
                    131: *          of the WORK, RWORK and IWORK arrays, and no error message
                    132: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    133: *
                    134: *  INFO    (output) INTEGER
                    135: *          = 0:  successful exit
                    136: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    137: *          > 0:  ZPPTRF or ZHPEVD returned an error code:
                    138: *             <= N:  if INFO = i, ZHPEVD failed to converge;
                    139: *                    i off-diagonal elements of an intermediate
                    140: *                    tridiagonal form did not convergeto zero;
                    141: *             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                    142: *                    minor of order i of B is not positive definite.
                    143: *                    The factorization of B could not be completed and
                    144: *                    no eigenvalues or eigenvectors were computed.
                    145: *
                    146: *  Further Details
                    147: *  ===============
                    148: *
                    149: *  Based on contributions by
                    150: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    151: *
                    152: *  =====================================================================
                    153: *
                    154: *     .. Local Scalars ..
                    155:       LOGICAL            LQUERY, UPPER, WANTZ
                    156:       CHARACTER          TRANS
                    157:       INTEGER            J, LIWMIN, LRWMIN, LWMIN, NEIG
                    158: *     ..
                    159: *     .. External Functions ..
                    160:       LOGICAL            LSAME
                    161:       EXTERNAL           LSAME
                    162: *     ..
                    163: *     .. External Subroutines ..
                    164:       EXTERNAL           XERBLA, ZHPEVD, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
                    165: *     ..
                    166: *     .. Intrinsic Functions ..
                    167:       INTRINSIC          DBLE, MAX
                    168: *     ..
                    169: *     .. Executable Statements ..
                    170: *
                    171: *     Test the input parameters.
                    172: *
                    173:       WANTZ = LSAME( JOBZ, 'V' )
                    174:       UPPER = LSAME( UPLO, 'U' )
                    175:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    176: *
                    177:       INFO = 0
                    178:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    179:          INFO = -1
                    180:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    181:          INFO = -2
                    182:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    183:          INFO = -3
                    184:       ELSE IF( N.LT.0 ) THEN
                    185:          INFO = -4
                    186:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    187:          INFO = -9
                    188:       END IF
                    189: *
                    190:       IF( INFO.EQ.0 ) THEN
                    191:          IF( N.LE.1 ) THEN
                    192:             LWMIN = 1
                    193:             LIWMIN = 1
                    194:             LRWMIN = 1
                    195:          ELSE
                    196:             IF( WANTZ ) THEN
                    197:                LWMIN = 2*N
                    198:                LRWMIN = 1 + 5*N + 2*N**2
                    199:                LIWMIN = 3 + 5*N
                    200:             ELSE
                    201:                LWMIN = N
                    202:                LRWMIN = N
                    203:                LIWMIN = 1
                    204:             END IF
                    205:          END IF
                    206: *
                    207:          WORK( 1 ) = LWMIN
                    208:          RWORK( 1 ) = LRWMIN
                    209:          IWORK( 1 ) = LIWMIN
                    210:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    211:             INFO = -11
                    212:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    213:             INFO = -13
                    214:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    215:             INFO = -15
                    216:          END IF
                    217:       END IF
                    218: *
                    219:       IF( INFO.NE.0 ) THEN
                    220:          CALL XERBLA( 'ZHPGVD', -INFO )
                    221:          RETURN
                    222:       ELSE IF( LQUERY ) THEN
                    223:          RETURN
                    224:       END IF
                    225: *
                    226: *     Quick return if possible
                    227: *
                    228:       IF( N.EQ.0 )
                    229:      $   RETURN
                    230: *
                    231: *     Form a Cholesky factorization of B.
                    232: *
                    233:       CALL ZPPTRF( UPLO, N, BP, INFO )
                    234:       IF( INFO.NE.0 ) THEN
                    235:          INFO = N + INFO
                    236:          RETURN
                    237:       END IF
                    238: *
                    239: *     Transform problem to standard eigenvalue problem and solve.
                    240: *
                    241:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    242:       CALL ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
                    243:      $             LRWORK, IWORK, LIWORK, INFO )
                    244:       LWMIN = MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) )
                    245:       LRWMIN = MAX( DBLE( LRWMIN ), DBLE( RWORK( 1 ) ) )
                    246:       LIWMIN = MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
                    247: *
                    248:       IF( WANTZ ) THEN
                    249: *
                    250: *        Backtransform eigenvectors to the original problem.
                    251: *
                    252:          NEIG = N
                    253:          IF( INFO.GT.0 )
                    254:      $      NEIG = INFO - 1
                    255:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    256: *
                    257: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
                    258: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
                    259: *
                    260:             IF( UPPER ) THEN
                    261:                TRANS = 'N'
                    262:             ELSE
                    263:                TRANS = 'C'
                    264:             END IF
                    265: *
                    266:             DO 10 J = 1, NEIG
                    267:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    268:      $                     1 )
                    269:    10       CONTINUE
                    270: *
                    271:          ELSE IF( ITYPE.EQ.3 ) THEN
                    272: *
                    273: *           For B*A*x=(lambda)*x;
                    274: *           backtransform eigenvectors: x = L*y or U'*y
                    275: *
                    276:             IF( UPPER ) THEN
                    277:                TRANS = 'C'
                    278:             ELSE
                    279:                TRANS = 'N'
                    280:             END IF
                    281: *
                    282:             DO 20 J = 1, NEIG
                    283:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    284:      $                     1 )
                    285:    20       CONTINUE
                    286:          END IF
                    287:       END IF
                    288: *
                    289:       WORK( 1 ) = LWMIN
                    290:       RWORK( 1 ) = LRWMIN
                    291:       IWORK( 1 ) = LIWMIN
                    292:       RETURN
                    293: *
                    294: *     End of ZHPGVD
                    295: *
                    296:       END

CVSweb interface <joel.bertrand@systella.fr>