Annotation of rpl/lapack/lapack/zhpgvd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
        !             2:      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   RWORK( * ), W( * )
        !            16:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
        !            23: *  of a complex generalized Hermitian-definite eigenproblem, of the form
        !            24: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
        !            25: *  B are assumed to be Hermitian, stored in packed format, and B is also
        !            26: *  positive definite.
        !            27: *  If eigenvectors are desired, it uses a divide and conquer algorithm.
        !            28: *
        !            29: *  The divide and conquer algorithm makes very mild assumptions about
        !            30: *  floating point arithmetic. It will work on machines with a guard
        !            31: *  digit in add/subtract, or on those binary machines without guard
        !            32: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            33: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            34: *  without guard digits, but we know of none.
        !            35: *
        !            36: *  Arguments
        !            37: *  =========
        !            38: *
        !            39: *  ITYPE   (input) INTEGER
        !            40: *          Specifies the problem type to be solved:
        !            41: *          = 1:  A*x = (lambda)*B*x
        !            42: *          = 2:  A*B*x = (lambda)*x
        !            43: *          = 3:  B*A*x = (lambda)*x
        !            44: *
        !            45: *  JOBZ    (input) CHARACTER*1
        !            46: *          = 'N':  Compute eigenvalues only;
        !            47: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            48: *
        !            49: *  UPLO    (input) CHARACTER*1
        !            50: *          = 'U':  Upper triangles of A and B are stored;
        !            51: *          = 'L':  Lower triangles of A and B are stored.
        !            52: *
        !            53: *  N       (input) INTEGER
        !            54: *          The order of the matrices A and B.  N >= 0.
        !            55: *
        !            56: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            57: *          On entry, the upper or lower triangle of the Hermitian matrix
        !            58: *          A, packed columnwise in a linear array.  The j-th column of A
        !            59: *          is stored in the array AP as follows:
        !            60: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            61: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            62: *
        !            63: *          On exit, the contents of AP are destroyed.
        !            64: *
        !            65: *  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            66: *          On entry, the upper or lower triangle of the Hermitian matrix
        !            67: *          B, packed columnwise in a linear array.  The j-th column of B
        !            68: *          is stored in the array BP as follows:
        !            69: *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
        !            70: *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
        !            71: *
        !            72: *          On exit, the triangular factor U or L from the Cholesky
        !            73: *          factorization B = U**H*U or B = L*L**H, in the same storage
        !            74: *          format as B.
        !            75: *
        !            76: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            77: *          If INFO = 0, the eigenvalues in ascending order.
        !            78: *
        !            79: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
        !            80: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !            81: *          eigenvectors.  The eigenvectors are normalized as follows:
        !            82: *          if ITYPE = 1 or 2, Z**H*B*Z = I;
        !            83: *          if ITYPE = 3, Z**H*inv(B)*Z = I.
        !            84: *          If JOBZ = 'N', then Z is not referenced.
        !            85: *
        !            86: *  LDZ     (input) INTEGER
        !            87: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !            88: *          JOBZ = 'V', LDZ >= max(1,N).
        !            89: *
        !            90: *  WORK    (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            91: *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
        !            92: *
        !            93: *  LWORK   (input) INTEGER
        !            94: *          The dimension of array WORK.
        !            95: *          If N <= 1,               LWORK >= 1.
        !            96: *          If JOBZ = 'N' and N > 1, LWORK >= N.
        !            97: *          If JOBZ = 'V' and N > 1, LWORK >= 2*N.
        !            98: *
        !            99: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           100: *          only calculates the required sizes of the WORK, RWORK and
        !           101: *          IWORK arrays, returns these values as the first entries of
        !           102: *          the WORK, RWORK and IWORK arrays, and no error message
        !           103: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           104: *
        !           105: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
        !           106: *          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
        !           107: *
        !           108: *  LRWORK  (input) INTEGER
        !           109: *          The dimension of array RWORK.
        !           110: *          If N <= 1,               LRWORK >= 1.
        !           111: *          If JOBZ = 'N' and N > 1, LRWORK >= N.
        !           112: *          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
        !           113: *
        !           114: *          If LRWORK = -1, then a workspace query is assumed; the
        !           115: *          routine only calculates the required sizes of the WORK, RWORK
        !           116: *          and IWORK arrays, returns these values as the first entries
        !           117: *          of the WORK, RWORK and IWORK arrays, and no error message
        !           118: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           119: *
        !           120: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           121: *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
        !           122: *
        !           123: *  LIWORK  (input) INTEGER
        !           124: *          The dimension of array IWORK.
        !           125: *          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
        !           126: *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           127: *
        !           128: *          If LIWORK = -1, then a workspace query is assumed; the
        !           129: *          routine only calculates the required sizes of the WORK, RWORK
        !           130: *          and IWORK arrays, returns these values as the first entries
        !           131: *          of the WORK, RWORK and IWORK arrays, and no error message
        !           132: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           133: *
        !           134: *  INFO    (output) INTEGER
        !           135: *          = 0:  successful exit
        !           136: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           137: *          > 0:  ZPPTRF or ZHPEVD returned an error code:
        !           138: *             <= N:  if INFO = i, ZHPEVD failed to converge;
        !           139: *                    i off-diagonal elements of an intermediate
        !           140: *                    tridiagonal form did not convergeto zero;
        !           141: *             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
        !           142: *                    minor of order i of B is not positive definite.
        !           143: *                    The factorization of B could not be completed and
        !           144: *                    no eigenvalues or eigenvectors were computed.
        !           145: *
        !           146: *  Further Details
        !           147: *  ===============
        !           148: *
        !           149: *  Based on contributions by
        !           150: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           151: *
        !           152: *  =====================================================================
        !           153: *
        !           154: *     .. Local Scalars ..
        !           155:       LOGICAL            LQUERY, UPPER, WANTZ
        !           156:       CHARACTER          TRANS
        !           157:       INTEGER            J, LIWMIN, LRWMIN, LWMIN, NEIG
        !           158: *     ..
        !           159: *     .. External Functions ..
        !           160:       LOGICAL            LSAME
        !           161:       EXTERNAL           LSAME
        !           162: *     ..
        !           163: *     .. External Subroutines ..
        !           164:       EXTERNAL           XERBLA, ZHPEVD, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
        !           165: *     ..
        !           166: *     .. Intrinsic Functions ..
        !           167:       INTRINSIC          DBLE, MAX
        !           168: *     ..
        !           169: *     .. Executable Statements ..
        !           170: *
        !           171: *     Test the input parameters.
        !           172: *
        !           173:       WANTZ = LSAME( JOBZ, 'V' )
        !           174:       UPPER = LSAME( UPLO, 'U' )
        !           175:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           176: *
        !           177:       INFO = 0
        !           178:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
        !           179:          INFO = -1
        !           180:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           181:          INFO = -2
        !           182:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           183:          INFO = -3
        !           184:       ELSE IF( N.LT.0 ) THEN
        !           185:          INFO = -4
        !           186:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           187:          INFO = -9
        !           188:       END IF
        !           189: *
        !           190:       IF( INFO.EQ.0 ) THEN
        !           191:          IF( N.LE.1 ) THEN
        !           192:             LWMIN = 1
        !           193:             LIWMIN = 1
        !           194:             LRWMIN = 1
        !           195:          ELSE
        !           196:             IF( WANTZ ) THEN
        !           197:                LWMIN = 2*N
        !           198:                LRWMIN = 1 + 5*N + 2*N**2
        !           199:                LIWMIN = 3 + 5*N
        !           200:             ELSE
        !           201:                LWMIN = N
        !           202:                LRWMIN = N
        !           203:                LIWMIN = 1
        !           204:             END IF
        !           205:          END IF
        !           206: *
        !           207:          WORK( 1 ) = LWMIN
        !           208:          RWORK( 1 ) = LRWMIN
        !           209:          IWORK( 1 ) = LIWMIN
        !           210:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           211:             INFO = -11
        !           212:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
        !           213:             INFO = -13
        !           214:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           215:             INFO = -15
        !           216:          END IF
        !           217:       END IF
        !           218: *
        !           219:       IF( INFO.NE.0 ) THEN
        !           220:          CALL XERBLA( 'ZHPGVD', -INFO )
        !           221:          RETURN
        !           222:       ELSE IF( LQUERY ) THEN
        !           223:          RETURN
        !           224:       END IF
        !           225: *
        !           226: *     Quick return if possible
        !           227: *
        !           228:       IF( N.EQ.0 )
        !           229:      $   RETURN
        !           230: *
        !           231: *     Form a Cholesky factorization of B.
        !           232: *
        !           233:       CALL ZPPTRF( UPLO, N, BP, INFO )
        !           234:       IF( INFO.NE.0 ) THEN
        !           235:          INFO = N + INFO
        !           236:          RETURN
        !           237:       END IF
        !           238: *
        !           239: *     Transform problem to standard eigenvalue problem and solve.
        !           240: *
        !           241:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
        !           242:       CALL ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
        !           243:      $             LRWORK, IWORK, LIWORK, INFO )
        !           244:       LWMIN = MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) )
        !           245:       LRWMIN = MAX( DBLE( LRWMIN ), DBLE( RWORK( 1 ) ) )
        !           246:       LIWMIN = MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
        !           247: *
        !           248:       IF( WANTZ ) THEN
        !           249: *
        !           250: *        Backtransform eigenvectors to the original problem.
        !           251: *
        !           252:          NEIG = N
        !           253:          IF( INFO.GT.0 )
        !           254:      $      NEIG = INFO - 1
        !           255:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
        !           256: *
        !           257: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
        !           258: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
        !           259: *
        !           260:             IF( UPPER ) THEN
        !           261:                TRANS = 'N'
        !           262:             ELSE
        !           263:                TRANS = 'C'
        !           264:             END IF
        !           265: *
        !           266:             DO 10 J = 1, NEIG
        !           267:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
        !           268:      $                     1 )
        !           269:    10       CONTINUE
        !           270: *
        !           271:          ELSE IF( ITYPE.EQ.3 ) THEN
        !           272: *
        !           273: *           For B*A*x=(lambda)*x;
        !           274: *           backtransform eigenvectors: x = L*y or U'*y
        !           275: *
        !           276:             IF( UPPER ) THEN
        !           277:                TRANS = 'C'
        !           278:             ELSE
        !           279:                TRANS = 'N'
        !           280:             END IF
        !           281: *
        !           282:             DO 20 J = 1, NEIG
        !           283:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
        !           284:      $                     1 )
        !           285:    20       CONTINUE
        !           286:          END IF
        !           287:       END IF
        !           288: *
        !           289:       WORK( 1 ) = LWMIN
        !           290:       RWORK( 1 ) = LRWMIN
        !           291:       IWORK( 1 ) = LIWMIN
        !           292:       RETURN
        !           293: *
        !           294: *     End of ZHPGVD
        !           295: *
        !           296:       END

CVSweb interface <joel.bertrand@systella.fr>