File:  [local] / rpl / lapack / lapack / zhpgv.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:48 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZHPGST
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHPGV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
   22: *                         RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBZ, UPLO
   26: *       INTEGER            INFO, ITYPE, LDZ, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   RWORK( * ), W( * )
   30: *       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZHPGV computes all the eigenvalues and, optionally, the eigenvectors
   40: *> of a complex generalized Hermitian-definite eigenproblem, of the form
   41: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
   42: *> Here A and B are assumed to be Hermitian, stored in packed format,
   43: *> and B is also positive definite.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] ITYPE
   50: *> \verbatim
   51: *>          ITYPE is INTEGER
   52: *>          Specifies the problem type to be solved:
   53: *>          = 1:  A*x = (lambda)*B*x
   54: *>          = 2:  A*B*x = (lambda)*x
   55: *>          = 3:  B*A*x = (lambda)*x
   56: *> \endverbatim
   57: *>
   58: *> \param[in] JOBZ
   59: *> \verbatim
   60: *>          JOBZ is CHARACTER*1
   61: *>          = 'N':  Compute eigenvalues only;
   62: *>          = 'V':  Compute eigenvalues and eigenvectors.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] UPLO
   66: *> \verbatim
   67: *>          UPLO is CHARACTER*1
   68: *>          = 'U':  Upper triangles of A and B are stored;
   69: *>          = 'L':  Lower triangles of A and B are stored.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] N
   73: *> \verbatim
   74: *>          N is INTEGER
   75: *>          The order of the matrices A and B.  N >= 0.
   76: *> \endverbatim
   77: *>
   78: *> \param[in,out] AP
   79: *> \verbatim
   80: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   81: *>          On entry, the upper or lower triangle of the Hermitian matrix
   82: *>          A, packed columnwise in a linear array.  The j-th column of A
   83: *>          is stored in the array AP as follows:
   84: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   85: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   86: *>
   87: *>          On exit, the contents of AP are destroyed.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] BP
   91: *> \verbatim
   92: *>          BP is COMPLEX*16 array, dimension (N*(N+1)/2)
   93: *>          On entry, the upper or lower triangle of the Hermitian matrix
   94: *>          B, packed columnwise in a linear array.  The j-th column of B
   95: *>          is stored in the array BP as follows:
   96: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
   97: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
   98: *>
   99: *>          On exit, the triangular factor U or L from the Cholesky
  100: *>          factorization B = U**H*U or B = L*L**H, in the same storage
  101: *>          format as B.
  102: *> \endverbatim
  103: *>
  104: *> \param[out] W
  105: *> \verbatim
  106: *>          W is DOUBLE PRECISION array, dimension (N)
  107: *>          If INFO = 0, the eigenvalues in ascending order.
  108: *> \endverbatim
  109: *>
  110: *> \param[out] Z
  111: *> \verbatim
  112: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
  113: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  114: *>          eigenvectors.  The eigenvectors are normalized as follows:
  115: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
  116: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
  117: *>          If JOBZ = 'N', then Z is not referenced.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDZ
  121: *> \verbatim
  122: *>          LDZ is INTEGER
  123: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  124: *>          JOBZ = 'V', LDZ >= max(1,N).
  125: *> \endverbatim
  126: *>
  127: *> \param[out] WORK
  128: *> \verbatim
  129: *>          WORK is COMPLEX*16 array, dimension (max(1, 2*N-1))
  130: *> \endverbatim
  131: *>
  132: *> \param[out] RWORK
  133: *> \verbatim
  134: *>          RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))
  135: *> \endverbatim
  136: *>
  137: *> \param[out] INFO
  138: *> \verbatim
  139: *>          INFO is INTEGER
  140: *>          = 0:  successful exit
  141: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  142: *>          > 0:  ZPPTRF or ZHPEV returned an error code:
  143: *>             <= N:  if INFO = i, ZHPEV failed to converge;
  144: *>                    i off-diagonal elements of an intermediate
  145: *>                    tridiagonal form did not convergeto zero;
  146: *>             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
  147: *>                    minor of order i of B is not positive definite.
  148: *>                    The factorization of B could not be completed and
  149: *>                    no eigenvalues or eigenvectors were computed.
  150: *> \endverbatim
  151: *
  152: *  Authors:
  153: *  ========
  154: *
  155: *> \author Univ. of Tennessee 
  156: *> \author Univ. of California Berkeley 
  157: *> \author Univ. of Colorado Denver 
  158: *> \author NAG Ltd. 
  159: *
  160: *> \date November 2011
  161: *
  162: *> \ingroup complex16OTHEReigen
  163: *
  164: *  =====================================================================
  165:       SUBROUTINE ZHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  166:      $                  RWORK, INFO )
  167: *
  168: *  -- LAPACK driver routine (version 3.4.0) --
  169: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  170: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  171: *     November 2011
  172: *
  173: *     .. Scalar Arguments ..
  174:       CHARACTER          JOBZ, UPLO
  175:       INTEGER            INFO, ITYPE, LDZ, N
  176: *     ..
  177: *     .. Array Arguments ..
  178:       DOUBLE PRECISION   RWORK( * ), W( * )
  179:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
  180: *     ..
  181: *
  182: *  =====================================================================
  183: *
  184: *     .. Local Scalars ..
  185:       LOGICAL            UPPER, WANTZ
  186:       CHARACTER          TRANS
  187:       INTEGER            J, NEIG
  188: *     ..
  189: *     .. External Functions ..
  190:       LOGICAL            LSAME
  191:       EXTERNAL           LSAME
  192: *     ..
  193: *     .. External Subroutines ..
  194:       EXTERNAL           XERBLA, ZHPEV, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
  195: *     ..
  196: *     .. Executable Statements ..
  197: *
  198: *     Test the input parameters.
  199: *
  200:       WANTZ = LSAME( JOBZ, 'V' )
  201:       UPPER = LSAME( UPLO, 'U' )
  202: *
  203:       INFO = 0
  204:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  205:          INFO = -1
  206:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  207:          INFO = -2
  208:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  209:          INFO = -3
  210:       ELSE IF( N.LT.0 ) THEN
  211:          INFO = -4
  212:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  213:          INFO = -9
  214:       END IF
  215:       IF( INFO.NE.0 ) THEN
  216:          CALL XERBLA( 'ZHPGV ', -INFO )
  217:          RETURN
  218:       END IF
  219: *
  220: *     Quick return if possible
  221: *
  222:       IF( N.EQ.0 )
  223:      $   RETURN
  224: *
  225: *     Form a Cholesky factorization of B.
  226: *
  227:       CALL ZPPTRF( UPLO, N, BP, INFO )
  228:       IF( INFO.NE.0 ) THEN
  229:          INFO = N + INFO
  230:          RETURN
  231:       END IF
  232: *
  233: *     Transform problem to standard eigenvalue problem and solve.
  234: *
  235:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  236:       CALL ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO )
  237: *
  238:       IF( WANTZ ) THEN
  239: *
  240: *        Backtransform eigenvectors to the original problem.
  241: *
  242:          NEIG = N
  243:          IF( INFO.GT.0 )
  244:      $      NEIG = INFO - 1
  245:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  246: *
  247: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  248: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
  249: *
  250:             IF( UPPER ) THEN
  251:                TRANS = 'N'
  252:             ELSE
  253:                TRANS = 'C'
  254:             END IF
  255: *
  256:             DO 10 J = 1, NEIG
  257:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  258:      $                     1 )
  259:    10       CONTINUE
  260: *
  261:          ELSE IF( ITYPE.EQ.3 ) THEN
  262: *
  263: *           For B*A*x=(lambda)*x;
  264: *           backtransform eigenvectors: x = L*y or U**H *y
  265: *
  266:             IF( UPPER ) THEN
  267:                TRANS = 'C'
  268:             ELSE
  269:                TRANS = 'N'
  270:             END IF
  271: *
  272:             DO 20 J = 1, NEIG
  273:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  274:      $                     1 )
  275:    20       CONTINUE
  276:          END IF
  277:       END IF
  278:       RETURN
  279: *
  280: *     End of ZHPGV
  281: *
  282:       END

CVSweb interface <joel.bertrand@systella.fr>