File:  [local] / rpl / lapack / lapack / zhpgst.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:26 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHPGST
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPGST + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgst.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgst.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgst.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, ITYPE, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         AP( * ), BP( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZHPGST reduces a complex Hermitian-definite generalized
   38: *> eigenproblem to standard form, using packed storage.
   39: *>
   40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
   41: *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
   42: *>
   43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
   45: *>
   46: *> B must have been previously factorized as U**H*U or L*L**H by ZPPTRF.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ITYPE
   53: *> \verbatim
   54: *>          ITYPE is INTEGER
   55: *>          = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
   56: *>          = 2 or 3: compute U*A*U**H or L**H*A*L.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          = 'U':  Upper triangle of A is stored and B is factored as
   63: *>                  U**H*U;
   64: *>          = 'L':  Lower triangle of A is stored and B is factored as
   65: *>                  L*L**H.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrices A and B.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] AP
   75: *> \verbatim
   76: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   77: *>          On entry, the upper or lower triangle of the Hermitian matrix
   78: *>          A, packed columnwise in a linear array.  The j-th column of A
   79: *>          is stored in the array AP as follows:
   80: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   81: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   82: *>
   83: *>          On exit, if INFO = 0, the transformed matrix, stored in the
   84: *>          same format as A.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] BP
   88: *> \verbatim
   89: *>          BP is COMPLEX*16 array, dimension (N*(N+1)/2)
   90: *>          The triangular factor from the Cholesky factorization of B,
   91: *>          stored in the same format as A, as returned by ZPPTRF.
   92: *> \endverbatim
   93: *>
   94: *> \param[out] INFO
   95: *> \verbatim
   96: *>          INFO is INTEGER
   97: *>          = 0:  successful exit
   98: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   99: *> \endverbatim
  100: *
  101: *  Authors:
  102: *  ========
  103: *
  104: *> \author Univ. of Tennessee
  105: *> \author Univ. of California Berkeley
  106: *> \author Univ. of Colorado Denver
  107: *> \author NAG Ltd.
  108: *
  109: *> \ingroup complex16OTHERcomputational
  110: *
  111: *  =====================================================================
  112:       SUBROUTINE ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  113: *
  114: *  -- LAPACK computational routine --
  115: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  116: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117: *
  118: *     .. Scalar Arguments ..
  119:       CHARACTER          UPLO
  120:       INTEGER            INFO, ITYPE, N
  121: *     ..
  122: *     .. Array Arguments ..
  123:       COMPLEX*16         AP( * ), BP( * )
  124: *     ..
  125: *
  126: *  =====================================================================
  127: *
  128: *     .. Parameters ..
  129:       DOUBLE PRECISION   ONE, HALF
  130:       PARAMETER          ( ONE = 1.0D+0, HALF = 0.5D+0 )
  131:       COMPLEX*16         CONE
  132:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  133: *     ..
  134: *     .. Local Scalars ..
  135:       LOGICAL            UPPER
  136:       INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
  137:       DOUBLE PRECISION   AJJ, AKK, BJJ, BKK
  138:       COMPLEX*16         CT
  139: *     ..
  140: *     .. External Subroutines ..
  141:       EXTERNAL           XERBLA, ZAXPY, ZDSCAL, ZHPMV, ZHPR2, ZTPMV,
  142:      $                   ZTPSV
  143: *     ..
  144: *     .. Intrinsic Functions ..
  145:       INTRINSIC          DBLE
  146: *     ..
  147: *     .. External Functions ..
  148:       LOGICAL            LSAME
  149:       COMPLEX*16         ZDOTC
  150:       EXTERNAL           LSAME, ZDOTC
  151: *     ..
  152: *     .. Executable Statements ..
  153: *
  154: *     Test the input parameters.
  155: *
  156:       INFO = 0
  157:       UPPER = LSAME( UPLO, 'U' )
  158:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  159:          INFO = -1
  160:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  161:          INFO = -2
  162:       ELSE IF( N.LT.0 ) THEN
  163:          INFO = -3
  164:       END IF
  165:       IF( INFO.NE.0 ) THEN
  166:          CALL XERBLA( 'ZHPGST', -INFO )
  167:          RETURN
  168:       END IF
  169: *
  170:       IF( ITYPE.EQ.1 ) THEN
  171:          IF( UPPER ) THEN
  172: *
  173: *           Compute inv(U**H)*A*inv(U)
  174: *
  175: *           J1 and JJ are the indices of A(1,j) and A(j,j)
  176: *
  177:             JJ = 0
  178:             DO 10 J = 1, N
  179:                J1 = JJ + 1
  180:                JJ = JJ + J
  181: *
  182: *              Compute the j-th column of the upper triangle of A
  183: *
  184:                AP( JJ ) = DBLE( AP( JJ ) )
  185:                BJJ = DBLE( BP( JJ ) )
  186:                CALL ZTPSV( UPLO, 'Conjugate transpose', 'Non-unit', J,
  187:      $                     BP, AP( J1 ), 1 )
  188:                CALL ZHPMV( UPLO, J-1, -CONE, AP, BP( J1 ), 1, CONE,
  189:      $                     AP( J1 ), 1 )
  190:                CALL ZDSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
  191:                AP( JJ ) = ( AP( JJ )-ZDOTC( J-1, AP( J1 ), 1, BP( J1 ),
  192:      $                    1 ) ) / BJJ
  193:    10       CONTINUE
  194:          ELSE
  195: *
  196: *           Compute inv(L)*A*inv(L**H)
  197: *
  198: *           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
  199: *
  200:             KK = 1
  201:             DO 20 K = 1, N
  202:                K1K1 = KK + N - K + 1
  203: *
  204: *              Update the lower triangle of A(k:n,k:n)
  205: *
  206:                AKK = DBLE( AP( KK ) )
  207:                BKK = DBLE( BP( KK ) )
  208:                AKK = AKK / BKK**2
  209:                AP( KK ) = AKK
  210:                IF( K.LT.N ) THEN
  211:                   CALL ZDSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
  212:                   CT = -HALF*AKK
  213:                   CALL ZAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  214:                   CALL ZHPR2( UPLO, N-K, -CONE, AP( KK+1 ), 1,
  215:      $                        BP( KK+1 ), 1, AP( K1K1 ) )
  216:                   CALL ZAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  217:                   CALL ZTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
  218:      $                        BP( K1K1 ), AP( KK+1 ), 1 )
  219:                END IF
  220:                KK = K1K1
  221:    20       CONTINUE
  222:          END IF
  223:       ELSE
  224:          IF( UPPER ) THEN
  225: *
  226: *           Compute U*A*U**H
  227: *
  228: *           K1 and KK are the indices of A(1,k) and A(k,k)
  229: *
  230:             KK = 0
  231:             DO 30 K = 1, N
  232:                K1 = KK + 1
  233:                KK = KK + K
  234: *
  235: *              Update the upper triangle of A(1:k,1:k)
  236: *
  237:                AKK = DBLE( AP( KK ) )
  238:                BKK = DBLE( BP( KK ) )
  239:                CALL ZTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
  240:      $                     AP( K1 ), 1 )
  241:                CT = HALF*AKK
  242:                CALL ZAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  243:                CALL ZHPR2( UPLO, K-1, CONE, AP( K1 ), 1, BP( K1 ), 1,
  244:      $                     AP )
  245:                CALL ZAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  246:                CALL ZDSCAL( K-1, BKK, AP( K1 ), 1 )
  247:                AP( KK ) = AKK*BKK**2
  248:    30       CONTINUE
  249:          ELSE
  250: *
  251: *           Compute L**H *A*L
  252: *
  253: *           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
  254: *
  255:             JJ = 1
  256:             DO 40 J = 1, N
  257:                J1J1 = JJ + N - J + 1
  258: *
  259: *              Compute the j-th column of the lower triangle of A
  260: *
  261:                AJJ = DBLE( AP( JJ ) )
  262:                BJJ = DBLE( BP( JJ ) )
  263:                AP( JJ ) = AJJ*BJJ + ZDOTC( N-J, AP( JJ+1 ), 1,
  264:      $                    BP( JJ+1 ), 1 )
  265:                CALL ZDSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
  266:                CALL ZHPMV( UPLO, N-J, CONE, AP( J1J1 ), BP( JJ+1 ), 1,
  267:      $                     CONE, AP( JJ+1 ), 1 )
  268:                CALL ZTPMV( UPLO, 'Conjugate transpose', 'Non-unit',
  269:      $                     N-J+1, BP( JJ ), AP( JJ ), 1 )
  270:                JJ = J1J1
  271:    40       CONTINUE
  272:          END IF
  273:       END IF
  274:       RETURN
  275: *
  276: *     End of ZHPGST
  277: *
  278:       END

CVSweb interface <joel.bertrand@systella.fr>