File:  [local] / rpl / lapack / lapack / zhpevx.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:12 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHPEVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
   23: *                          IFAIL, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
   43: *> of a complex Hermitian matrix A in packed storage.
   44: *> Eigenvalues/vectors can be selected by specifying either a range of
   45: *> values or a range of indices for the desired eigenvalues.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] JOBZ
   52: *> \verbatim
   53: *>          JOBZ is CHARACTER*1
   54: *>          = 'N':  Compute eigenvalues only;
   55: *>          = 'V':  Compute eigenvalues and eigenvectors.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] RANGE
   59: *> \verbatim
   60: *>          RANGE is CHARACTER*1
   61: *>          = 'A': all eigenvalues will be found;
   62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   63: *>                 will be found;
   64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] UPLO
   68: *> \verbatim
   69: *>          UPLO is CHARACTER*1
   70: *>          = 'U':  Upper triangle of A is stored;
   71: *>          = 'L':  Lower triangle of A is stored.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>          The order of the matrix A.  N >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] AP
   81: *> \verbatim
   82: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   83: *>          On entry, the upper or lower triangle of the Hermitian matrix
   84: *>          A, packed columnwise in a linear array.  The j-th column of A
   85: *>          is stored in the array AP as follows:
   86: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   87: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   88: *>
   89: *>          On exit, AP is overwritten by values generated during the
   90: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
   91: *>          and first superdiagonal of the tridiagonal matrix T overwrite
   92: *>          the corresponding elements of A, and if UPLO = 'L', the
   93: *>          diagonal and first subdiagonal of T overwrite the
   94: *>          corresponding elements of A.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] VL
   98: *> \verbatim
   99: *>          VL is DOUBLE PRECISION
  100: *> \endverbatim
  101: *>
  102: *> \param[in] VU
  103: *> \verbatim
  104: *>          VU is DOUBLE PRECISION
  105: *>          If RANGE='V', the lower and upper bounds of the interval to
  106: *>          be searched for eigenvalues. VL < VU.
  107: *>          Not referenced if RANGE = 'A' or 'I'.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] IL
  111: *> \verbatim
  112: *>          IL is INTEGER
  113: *> \endverbatim
  114: *>
  115: *> \param[in] IU
  116: *> \verbatim
  117: *>          IU is INTEGER
  118: *>          If RANGE='I', the indices (in ascending order) of the
  119: *>          smallest and largest eigenvalues to be returned.
  120: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  121: *>          Not referenced if RANGE = 'A' or 'V'.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] ABSTOL
  125: *> \verbatim
  126: *>          ABSTOL is DOUBLE PRECISION
  127: *>          The absolute error tolerance for the eigenvalues.
  128: *>          An approximate eigenvalue is accepted as converged
  129: *>          when it is determined to lie in an interval [a,b]
  130: *>          of width less than or equal to
  131: *>
  132: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  133: *>
  134: *>          where EPS is the machine precision.  If ABSTOL is less than
  135: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  136: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  137: *>          by reducing AP to tridiagonal form.
  138: *>
  139: *>          Eigenvalues will be computed most accurately when ABSTOL is
  140: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  141: *>          If this routine returns with INFO>0, indicating that some
  142: *>          eigenvectors did not converge, try setting ABSTOL to
  143: *>          2*DLAMCH('S').
  144: *>
  145: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  146: *>          with Guaranteed High Relative Accuracy," by Demmel and
  147: *>          Kahan, LAPACK Working Note #3.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] M
  151: *> \verbatim
  152: *>          M is INTEGER
  153: *>          The total number of eigenvalues found.  0 <= M <= N.
  154: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  155: *> \endverbatim
  156: *>
  157: *> \param[out] W
  158: *> \verbatim
  159: *>          W is DOUBLE PRECISION array, dimension (N)
  160: *>          If INFO = 0, the selected eigenvalues in ascending order.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] Z
  164: *> \verbatim
  165: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  166: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  167: *>          contain the orthonormal eigenvectors of the matrix A
  168: *>          corresponding to the selected eigenvalues, with the i-th
  169: *>          column of Z holding the eigenvector associated with W(i).
  170: *>          If an eigenvector fails to converge, then that column of Z
  171: *>          contains the latest approximation to the eigenvector, and
  172: *>          the index of the eigenvector is returned in IFAIL.
  173: *>          If JOBZ = 'N', then Z is not referenced.
  174: *>          Note: the user must ensure that at least max(1,M) columns are
  175: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  176: *>          is not known in advance and an upper bound must be used.
  177: *> \endverbatim
  178: *>
  179: *> \param[in] LDZ
  180: *> \verbatim
  181: *>          LDZ is INTEGER
  182: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  183: *>          JOBZ = 'V', LDZ >= max(1,N).
  184: *> \endverbatim
  185: *>
  186: *> \param[out] WORK
  187: *> \verbatim
  188: *>          WORK is COMPLEX*16 array, dimension (2*N)
  189: *> \endverbatim
  190: *>
  191: *> \param[out] RWORK
  192: *> \verbatim
  193: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  194: *> \endverbatim
  195: *>
  196: *> \param[out] IWORK
  197: *> \verbatim
  198: *>          IWORK is INTEGER array, dimension (5*N)
  199: *> \endverbatim
  200: *>
  201: *> \param[out] IFAIL
  202: *> \verbatim
  203: *>          IFAIL is INTEGER array, dimension (N)
  204: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  205: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  206: *>          indices of the eigenvectors that failed to converge.
  207: *>          If JOBZ = 'N', then IFAIL is not referenced.
  208: *> \endverbatim
  209: *>
  210: *> \param[out] INFO
  211: *> \verbatim
  212: *>          INFO is INTEGER
  213: *>          = 0:  successful exit
  214: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  215: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  216: *>                Their indices are stored in array IFAIL.
  217: *> \endverbatim
  218: *
  219: *  Authors:
  220: *  ========
  221: *
  222: *> \author Univ. of Tennessee 
  223: *> \author Univ. of California Berkeley 
  224: *> \author Univ. of Colorado Denver 
  225: *> \author NAG Ltd. 
  226: *
  227: *> \date November 2011
  228: *
  229: *> \ingroup complex16OTHEReigen
  230: *
  231: *  =====================================================================
  232:       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
  233:      $                   ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
  234:      $                   IFAIL, INFO )
  235: *
  236: *  -- LAPACK driver routine (version 3.4.0) --
  237: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  238: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  239: *     November 2011
  240: *
  241: *     .. Scalar Arguments ..
  242:       CHARACTER          JOBZ, RANGE, UPLO
  243:       INTEGER            IL, INFO, IU, LDZ, M, N
  244:       DOUBLE PRECISION   ABSTOL, VL, VU
  245: *     ..
  246: *     .. Array Arguments ..
  247:       INTEGER            IFAIL( * ), IWORK( * )
  248:       DOUBLE PRECISION   RWORK( * ), W( * )
  249:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
  250: *     ..
  251: *
  252: *  =====================================================================
  253: *
  254: *     .. Parameters ..
  255:       DOUBLE PRECISION   ZERO, ONE
  256:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  257:       COMPLEX*16         CONE
  258:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
  259: *     ..
  260: *     .. Local Scalars ..
  261:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  262:       CHARACTER          ORDER
  263:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  264:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  265:      $                   ITMP1, J, JJ, NSPLIT
  266:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  267:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  268: *     ..
  269: *     .. External Functions ..
  270:       LOGICAL            LSAME
  271:       DOUBLE PRECISION   DLAMCH, ZLANHP
  272:       EXTERNAL           LSAME, DLAMCH, ZLANHP
  273: *     ..
  274: *     .. External Subroutines ..
  275:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  276:      $                   ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
  277: *     ..
  278: *     .. Intrinsic Functions ..
  279:       INTRINSIC          DBLE, MAX, MIN, SQRT
  280: *     ..
  281: *     .. Executable Statements ..
  282: *
  283: *     Test the input parameters.
  284: *
  285:       WANTZ = LSAME( JOBZ, 'V' )
  286:       ALLEIG = LSAME( RANGE, 'A' )
  287:       VALEIG = LSAME( RANGE, 'V' )
  288:       INDEIG = LSAME( RANGE, 'I' )
  289: *
  290:       INFO = 0
  291:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  292:          INFO = -1
  293:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  294:          INFO = -2
  295:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  296:      $          THEN
  297:          INFO = -3
  298:       ELSE IF( N.LT.0 ) THEN
  299:          INFO = -4
  300:       ELSE
  301:          IF( VALEIG ) THEN
  302:             IF( N.GT.0 .AND. VU.LE.VL )
  303:      $         INFO = -7
  304:          ELSE IF( INDEIG ) THEN
  305:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  306:                INFO = -8
  307:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  308:                INFO = -9
  309:             END IF
  310:          END IF
  311:       END IF
  312:       IF( INFO.EQ.0 ) THEN
  313:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  314:      $      INFO = -14
  315:       END IF
  316: *
  317:       IF( INFO.NE.0 ) THEN
  318:          CALL XERBLA( 'ZHPEVX', -INFO )
  319:          RETURN
  320:       END IF
  321: *
  322: *     Quick return if possible
  323: *
  324:       M = 0
  325:       IF( N.EQ.0 )
  326:      $   RETURN
  327: *
  328:       IF( N.EQ.1 ) THEN
  329:          IF( ALLEIG .OR. INDEIG ) THEN
  330:             M = 1
  331:             W( 1 ) = AP( 1 )
  332:          ELSE
  333:             IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
  334:                M = 1
  335:                W( 1 ) = AP( 1 )
  336:             END IF
  337:          END IF
  338:          IF( WANTZ )
  339:      $      Z( 1, 1 ) = CONE
  340:          RETURN
  341:       END IF
  342: *
  343: *     Get machine constants.
  344: *
  345:       SAFMIN = DLAMCH( 'Safe minimum' )
  346:       EPS = DLAMCH( 'Precision' )
  347:       SMLNUM = SAFMIN / EPS
  348:       BIGNUM = ONE / SMLNUM
  349:       RMIN = SQRT( SMLNUM )
  350:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  351: *
  352: *     Scale matrix to allowable range, if necessary.
  353: *
  354:       ISCALE = 0
  355:       ABSTLL = ABSTOL
  356:       IF( VALEIG ) THEN
  357:          VLL = VL
  358:          VUU = VU
  359:       ELSE
  360:          VLL = ZERO
  361:          VUU = ZERO
  362:       END IF
  363:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
  364:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  365:          ISCALE = 1
  366:          SIGMA = RMIN / ANRM
  367:       ELSE IF( ANRM.GT.RMAX ) THEN
  368:          ISCALE = 1
  369:          SIGMA = RMAX / ANRM
  370:       END IF
  371:       IF( ISCALE.EQ.1 ) THEN
  372:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  373:          IF( ABSTOL.GT.0 )
  374:      $      ABSTLL = ABSTOL*SIGMA
  375:          IF( VALEIG ) THEN
  376:             VLL = VL*SIGMA
  377:             VUU = VU*SIGMA
  378:          END IF
  379:       END IF
  380: *
  381: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
  382: *
  383:       INDD = 1
  384:       INDE = INDD + N
  385:       INDRWK = INDE + N
  386:       INDTAU = 1
  387:       INDWRK = INDTAU + N
  388:       CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
  389:      $             WORK( INDTAU ), IINFO )
  390: *
  391: *     If all eigenvalues are desired and ABSTOL is less than or equal
  392: *     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails
  393: *     for some eigenvalue, then try DSTEBZ.
  394: *
  395:       TEST = .FALSE.
  396:       IF (INDEIG) THEN
  397:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  398:             TEST = .TRUE.
  399:          END IF
  400:       END IF
  401:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  402:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  403:          INDEE = INDRWK + 2*N
  404:          IF( .NOT.WANTZ ) THEN
  405:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  406:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  407:          ELSE
  408:             CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  409:      $                   WORK( INDWRK ), IINFO )
  410:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  411:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  412:      $                   RWORK( INDRWK ), INFO )
  413:             IF( INFO.EQ.0 ) THEN
  414:                DO 10 I = 1, N
  415:                   IFAIL( I ) = 0
  416:    10          CONTINUE
  417:             END IF
  418:          END IF
  419:          IF( INFO.EQ.0 ) THEN
  420:             M = N
  421:             GO TO 20
  422:          END IF
  423:          INFO = 0
  424:       END IF
  425: *
  426: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  427: *
  428:       IF( WANTZ ) THEN
  429:          ORDER = 'B'
  430:       ELSE
  431:          ORDER = 'E'
  432:       END IF
  433:       INDIBL = 1
  434:       INDISP = INDIBL + N
  435:       INDIWK = INDISP + N
  436:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  437:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  438:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  439:      $             IWORK( INDIWK ), INFO )
  440: *
  441:       IF( WANTZ ) THEN
  442:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  443:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  444:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  445: *
  446: *        Apply unitary matrix used in reduction to tridiagonal
  447: *        form to eigenvectors returned by ZSTEIN.
  448: *
  449:          INDWRK = INDTAU + N
  450:          CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
  451:      $                WORK( INDWRK ), IINFO )
  452:       END IF
  453: *
  454: *     If matrix was scaled, then rescale eigenvalues appropriately.
  455: *
  456:    20 CONTINUE
  457:       IF( ISCALE.EQ.1 ) THEN
  458:          IF( INFO.EQ.0 ) THEN
  459:             IMAX = M
  460:          ELSE
  461:             IMAX = INFO - 1
  462:          END IF
  463:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  464:       END IF
  465: *
  466: *     If eigenvalues are not in order, then sort them, along with
  467: *     eigenvectors.
  468: *
  469:       IF( WANTZ ) THEN
  470:          DO 40 J = 1, M - 1
  471:             I = 0
  472:             TMP1 = W( J )
  473:             DO 30 JJ = J + 1, M
  474:                IF( W( JJ ).LT.TMP1 ) THEN
  475:                   I = JJ
  476:                   TMP1 = W( JJ )
  477:                END IF
  478:    30       CONTINUE
  479: *
  480:             IF( I.NE.0 ) THEN
  481:                ITMP1 = IWORK( INDIBL+I-1 )
  482:                W( I ) = W( J )
  483:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  484:                W( J ) = TMP1
  485:                IWORK( INDIBL+J-1 ) = ITMP1
  486:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  487:                IF( INFO.NE.0 ) THEN
  488:                   ITMP1 = IFAIL( I )
  489:                   IFAIL( I ) = IFAIL( J )
  490:                   IFAIL( J ) = ITMP1
  491:                END IF
  492:             END IF
  493:    40    CONTINUE
  494:       END IF
  495: *
  496:       RETURN
  497: *
  498: *     End of ZHPEVX
  499: *
  500:       END

CVSweb interface <joel.bertrand@systella.fr>