File:  [local] / rpl / lapack / lapack / zhpevx.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:34 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
    2:      $                   ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
    3:      $                   IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, LDZ, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   RWORK( * ), W( * )
   18:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
   25: *  of a complex Hermitian matrix A in packed storage.
   26: *  Eigenvalues/vectors can be selected by specifying either a range of
   27: *  values or a range of indices for the desired eigenvalues.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  JOBZ    (input) CHARACTER*1
   33: *          = 'N':  Compute eigenvalues only;
   34: *          = 'V':  Compute eigenvalues and eigenvectors.
   35: *
   36: *  RANGE   (input) CHARACTER*1
   37: *          = 'A': all eigenvalues will be found;
   38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   39: *                 will be found;
   40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   41: *
   42: *  UPLO    (input) CHARACTER*1
   43: *          = 'U':  Upper triangle of A is stored;
   44: *          = 'L':  Lower triangle of A is stored.
   45: *
   46: *  N       (input) INTEGER
   47: *          The order of the matrix A.  N >= 0.
   48: *
   49: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   50: *          On entry, the upper or lower triangle of the Hermitian matrix
   51: *          A, packed columnwise in a linear array.  The j-th column of A
   52: *          is stored in the array AP as follows:
   53: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   54: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   55: *
   56: *          On exit, AP is overwritten by values generated during the
   57: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
   58: *          and first superdiagonal of the tridiagonal matrix T overwrite
   59: *          the corresponding elements of A, and if UPLO = 'L', the
   60: *          diagonal and first subdiagonal of T overwrite the
   61: *          corresponding elements of A.
   62: *
   63: *  VL      (input) DOUBLE PRECISION
   64: *  VU      (input) DOUBLE PRECISION
   65: *          If RANGE='V', the lower and upper bounds of the interval to
   66: *          be searched for eigenvalues. VL < VU.
   67: *          Not referenced if RANGE = 'A' or 'I'.
   68: *
   69: *  IL      (input) INTEGER
   70: *  IU      (input) INTEGER
   71: *          If RANGE='I', the indices (in ascending order) of the
   72: *          smallest and largest eigenvalues to be returned.
   73: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   74: *          Not referenced if RANGE = 'A' or 'V'.
   75: *
   76: *  ABSTOL  (input) DOUBLE PRECISION
   77: *          The absolute error tolerance for the eigenvalues.
   78: *          An approximate eigenvalue is accepted as converged
   79: *          when it is determined to lie in an interval [a,b]
   80: *          of width less than or equal to
   81: *
   82: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   83: *
   84: *          where EPS is the machine precision.  If ABSTOL is less than
   85: *          or equal to zero, then  EPS*|T|  will be used in its place,
   86: *          where |T| is the 1-norm of the tridiagonal matrix obtained
   87: *          by reducing AP to tridiagonal form.
   88: *
   89: *          Eigenvalues will be computed most accurately when ABSTOL is
   90: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
   91: *          If this routine returns with INFO>0, indicating that some
   92: *          eigenvectors did not converge, try setting ABSTOL to
   93: *          2*DLAMCH('S').
   94: *
   95: *          See "Computing Small Singular Values of Bidiagonal Matrices
   96: *          with Guaranteed High Relative Accuracy," by Demmel and
   97: *          Kahan, LAPACK Working Note #3.
   98: *
   99: *  M       (output) INTEGER
  100: *          The total number of eigenvalues found.  0 <= M <= N.
  101: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  102: *
  103: *  W       (output) DOUBLE PRECISION array, dimension (N)
  104: *          If INFO = 0, the selected eigenvalues in ascending order.
  105: *
  106: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
  107: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  108: *          contain the orthonormal eigenvectors of the matrix A
  109: *          corresponding to the selected eigenvalues, with the i-th
  110: *          column of Z holding the eigenvector associated with W(i).
  111: *          If an eigenvector fails to converge, then that column of Z
  112: *          contains the latest approximation to the eigenvector, and
  113: *          the index of the eigenvector is returned in IFAIL.
  114: *          If JOBZ = 'N', then Z is not referenced.
  115: *          Note: the user must ensure that at least max(1,M) columns are
  116: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  117: *          is not known in advance and an upper bound must be used.
  118: *
  119: *  LDZ     (input) INTEGER
  120: *          The leading dimension of the array Z.  LDZ >= 1, and if
  121: *          JOBZ = 'V', LDZ >= max(1,N).
  122: *
  123: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  124: *
  125: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
  126: *
  127: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  128: *
  129: *  IFAIL   (output) INTEGER array, dimension (N)
  130: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  131: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  132: *          indices of the eigenvectors that failed to converge.
  133: *          If JOBZ = 'N', then IFAIL is not referenced.
  134: *
  135: *  INFO    (output) INTEGER
  136: *          = 0:  successful exit
  137: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  138: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
  139: *                Their indices are stored in array IFAIL.
  140: *
  141: *  =====================================================================
  142: *
  143: *     .. Parameters ..
  144:       DOUBLE PRECISION   ZERO, ONE
  145:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  146:       COMPLEX*16         CONE
  147:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
  148: *     ..
  149: *     .. Local Scalars ..
  150:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  151:       CHARACTER          ORDER
  152:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  153:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  154:      $                   ITMP1, J, JJ, NSPLIT
  155:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  156:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  157: *     ..
  158: *     .. External Functions ..
  159:       LOGICAL            LSAME
  160:       DOUBLE PRECISION   DLAMCH, ZLANHP
  161:       EXTERNAL           LSAME, DLAMCH, ZLANHP
  162: *     ..
  163: *     .. External Subroutines ..
  164:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  165:      $                   ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
  166: *     ..
  167: *     .. Intrinsic Functions ..
  168:       INTRINSIC          DBLE, MAX, MIN, SQRT
  169: *     ..
  170: *     .. Executable Statements ..
  171: *
  172: *     Test the input parameters.
  173: *
  174:       WANTZ = LSAME( JOBZ, 'V' )
  175:       ALLEIG = LSAME( RANGE, 'A' )
  176:       VALEIG = LSAME( RANGE, 'V' )
  177:       INDEIG = LSAME( RANGE, 'I' )
  178: *
  179:       INFO = 0
  180:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  181:          INFO = -1
  182:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  183:          INFO = -2
  184:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  185:      $          THEN
  186:          INFO = -3
  187:       ELSE IF( N.LT.0 ) THEN
  188:          INFO = -4
  189:       ELSE
  190:          IF( VALEIG ) THEN
  191:             IF( N.GT.0 .AND. VU.LE.VL )
  192:      $         INFO = -7
  193:          ELSE IF( INDEIG ) THEN
  194:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  195:                INFO = -8
  196:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  197:                INFO = -9
  198:             END IF
  199:          END IF
  200:       END IF
  201:       IF( INFO.EQ.0 ) THEN
  202:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  203:      $      INFO = -14
  204:       END IF
  205: *
  206:       IF( INFO.NE.0 ) THEN
  207:          CALL XERBLA( 'ZHPEVX', -INFO )
  208:          RETURN
  209:       END IF
  210: *
  211: *     Quick return if possible
  212: *
  213:       M = 0
  214:       IF( N.EQ.0 )
  215:      $   RETURN
  216: *
  217:       IF( N.EQ.1 ) THEN
  218:          IF( ALLEIG .OR. INDEIG ) THEN
  219:             M = 1
  220:             W( 1 ) = AP( 1 )
  221:          ELSE
  222:             IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
  223:                M = 1
  224:                W( 1 ) = AP( 1 )
  225:             END IF
  226:          END IF
  227:          IF( WANTZ )
  228:      $      Z( 1, 1 ) = CONE
  229:          RETURN
  230:       END IF
  231: *
  232: *     Get machine constants.
  233: *
  234:       SAFMIN = DLAMCH( 'Safe minimum' )
  235:       EPS = DLAMCH( 'Precision' )
  236:       SMLNUM = SAFMIN / EPS
  237:       BIGNUM = ONE / SMLNUM
  238:       RMIN = SQRT( SMLNUM )
  239:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  240: *
  241: *     Scale matrix to allowable range, if necessary.
  242: *
  243:       ISCALE = 0
  244:       ABSTLL = ABSTOL
  245:       IF( VALEIG ) THEN
  246:          VLL = VL
  247:          VUU = VU
  248:       ELSE
  249:          VLL = ZERO
  250:          VUU = ZERO
  251:       END IF
  252:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
  253:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  254:          ISCALE = 1
  255:          SIGMA = RMIN / ANRM
  256:       ELSE IF( ANRM.GT.RMAX ) THEN
  257:          ISCALE = 1
  258:          SIGMA = RMAX / ANRM
  259:       END IF
  260:       IF( ISCALE.EQ.1 ) THEN
  261:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  262:          IF( ABSTOL.GT.0 )
  263:      $      ABSTLL = ABSTOL*SIGMA
  264:          IF( VALEIG ) THEN
  265:             VLL = VL*SIGMA
  266:             VUU = VU*SIGMA
  267:          END IF
  268:       END IF
  269: *
  270: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
  271: *
  272:       INDD = 1
  273:       INDE = INDD + N
  274:       INDRWK = INDE + N
  275:       INDTAU = 1
  276:       INDWRK = INDTAU + N
  277:       CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
  278:      $             WORK( INDTAU ), IINFO )
  279: *
  280: *     If all eigenvalues are desired and ABSTOL is less than or equal
  281: *     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails
  282: *     for some eigenvalue, then try DSTEBZ.
  283: *
  284:       TEST = .FALSE.
  285:       IF (INDEIG) THEN
  286:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  287:             TEST = .TRUE.
  288:          END IF
  289:       END IF
  290:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  291:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  292:          INDEE = INDRWK + 2*N
  293:          IF( .NOT.WANTZ ) THEN
  294:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  295:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  296:          ELSE
  297:             CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  298:      $                   WORK( INDWRK ), IINFO )
  299:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  300:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  301:      $                   RWORK( INDRWK ), INFO )
  302:             IF( INFO.EQ.0 ) THEN
  303:                DO 10 I = 1, N
  304:                   IFAIL( I ) = 0
  305:    10          CONTINUE
  306:             END IF
  307:          END IF
  308:          IF( INFO.EQ.0 ) THEN
  309:             M = N
  310:             GO TO 20
  311:          END IF
  312:          INFO = 0
  313:       END IF
  314: *
  315: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  316: *
  317:       IF( WANTZ ) THEN
  318:          ORDER = 'B'
  319:       ELSE
  320:          ORDER = 'E'
  321:       END IF
  322:       INDIBL = 1
  323:       INDISP = INDIBL + N
  324:       INDIWK = INDISP + N
  325:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  326:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  327:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  328:      $             IWORK( INDIWK ), INFO )
  329: *
  330:       IF( WANTZ ) THEN
  331:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  332:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  333:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  334: *
  335: *        Apply unitary matrix used in reduction to tridiagonal
  336: *        form to eigenvectors returned by ZSTEIN.
  337: *
  338:          INDWRK = INDTAU + N
  339:          CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
  340:      $                WORK( INDWRK ), IINFO )
  341:       END IF
  342: *
  343: *     If matrix was scaled, then rescale eigenvalues appropriately.
  344: *
  345:    20 CONTINUE
  346:       IF( ISCALE.EQ.1 ) THEN
  347:          IF( INFO.EQ.0 ) THEN
  348:             IMAX = M
  349:          ELSE
  350:             IMAX = INFO - 1
  351:          END IF
  352:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  353:       END IF
  354: *
  355: *     If eigenvalues are not in order, then sort them, along with
  356: *     eigenvectors.
  357: *
  358:       IF( WANTZ ) THEN
  359:          DO 40 J = 1, M - 1
  360:             I = 0
  361:             TMP1 = W( J )
  362:             DO 30 JJ = J + 1, M
  363:                IF( W( JJ ).LT.TMP1 ) THEN
  364:                   I = JJ
  365:                   TMP1 = W( JJ )
  366:                END IF
  367:    30       CONTINUE
  368: *
  369:             IF( I.NE.0 ) THEN
  370:                ITMP1 = IWORK( INDIBL+I-1 )
  371:                W( I ) = W( J )
  372:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  373:                W( J ) = TMP1
  374:                IWORK( INDIBL+J-1 ) = ITMP1
  375:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  376:                IF( INFO.NE.0 ) THEN
  377:                   ITMP1 = IFAIL( I )
  378:                   IFAIL( I ) = IFAIL( J )
  379:                   IFAIL( J ) = ITMP1
  380:                END IF
  381:             END IF
  382:    40    CONTINUE
  383:       END IF
  384: *
  385:       RETURN
  386: *
  387: *     End of ZHPEVX
  388: *
  389:       END

CVSweb interface <joel.bertrand@systella.fr>