File:  [local] / rpl / lapack / lapack / zhpevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:26 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
   23: *                          IFAIL, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
   43: *> of a complex Hermitian matrix A in packed storage.
   44: *> Eigenvalues/vectors can be selected by specifying either a range of
   45: *> values or a range of indices for the desired eigenvalues.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] JOBZ
   52: *> \verbatim
   53: *>          JOBZ is CHARACTER*1
   54: *>          = 'N':  Compute eigenvalues only;
   55: *>          = 'V':  Compute eigenvalues and eigenvectors.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] RANGE
   59: *> \verbatim
   60: *>          RANGE is CHARACTER*1
   61: *>          = 'A': all eigenvalues will be found;
   62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   63: *>                 will be found;
   64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] UPLO
   68: *> \verbatim
   69: *>          UPLO is CHARACTER*1
   70: *>          = 'U':  Upper triangle of A is stored;
   71: *>          = 'L':  Lower triangle of A is stored.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>          The order of the matrix A.  N >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] AP
   81: *> \verbatim
   82: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   83: *>          On entry, the upper or lower triangle of the Hermitian matrix
   84: *>          A, packed columnwise in a linear array.  The j-th column of A
   85: *>          is stored in the array AP as follows:
   86: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   87: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   88: *>
   89: *>          On exit, AP is overwritten by values generated during the
   90: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
   91: *>          and first superdiagonal of the tridiagonal matrix T overwrite
   92: *>          the corresponding elements of A, and if UPLO = 'L', the
   93: *>          diagonal and first subdiagonal of T overwrite the
   94: *>          corresponding elements of A.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] VL
   98: *> \verbatim
   99: *>          VL is DOUBLE PRECISION
  100: *>          If RANGE='V', the lower bound of the interval to
  101: *>          be searched for eigenvalues. VL < VU.
  102: *>          Not referenced if RANGE = 'A' or 'I'.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] VU
  106: *> \verbatim
  107: *>          VU is DOUBLE PRECISION
  108: *>          If RANGE='V', the upper bound of the interval to
  109: *>          be searched for eigenvalues. VL < VU.
  110: *>          Not referenced if RANGE = 'A' or 'I'.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] IL
  114: *> \verbatim
  115: *>          IL is INTEGER
  116: *>          If RANGE='I', the index of the
  117: *>          smallest eigenvalue to be returned.
  118: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  119: *>          Not referenced if RANGE = 'A' or 'V'.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] IU
  123: *> \verbatim
  124: *>          IU is INTEGER
  125: *>          If RANGE='I', the index of the
  126: *>          largest eigenvalue to be returned.
  127: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  128: *>          Not referenced if RANGE = 'A' or 'V'.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] ABSTOL
  132: *> \verbatim
  133: *>          ABSTOL is DOUBLE PRECISION
  134: *>          The absolute error tolerance for the eigenvalues.
  135: *>          An approximate eigenvalue is accepted as converged
  136: *>          when it is determined to lie in an interval [a,b]
  137: *>          of width less than or equal to
  138: *>
  139: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  140: *>
  141: *>          where EPS is the machine precision.  If ABSTOL is less than
  142: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  143: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  144: *>          by reducing AP to tridiagonal form.
  145: *>
  146: *>          Eigenvalues will be computed most accurately when ABSTOL is
  147: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  148: *>          If this routine returns with INFO>0, indicating that some
  149: *>          eigenvectors did not converge, try setting ABSTOL to
  150: *>          2*DLAMCH('S').
  151: *>
  152: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  153: *>          with Guaranteed High Relative Accuracy," by Demmel and
  154: *>          Kahan, LAPACK Working Note #3.
  155: *> \endverbatim
  156: *>
  157: *> \param[out] M
  158: *> \verbatim
  159: *>          M is INTEGER
  160: *>          The total number of eigenvalues found.  0 <= M <= N.
  161: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] W
  165: *> \verbatim
  166: *>          W is DOUBLE PRECISION array, dimension (N)
  167: *>          If INFO = 0, the selected eigenvalues in ascending order.
  168: *> \endverbatim
  169: *>
  170: *> \param[out] Z
  171: *> \verbatim
  172: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  173: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  174: *>          contain the orthonormal eigenvectors of the matrix A
  175: *>          corresponding to the selected eigenvalues, with the i-th
  176: *>          column of Z holding the eigenvector associated with W(i).
  177: *>          If an eigenvector fails to converge, then that column of Z
  178: *>          contains the latest approximation to the eigenvector, and
  179: *>          the index of the eigenvector is returned in IFAIL.
  180: *>          If JOBZ = 'N', then Z is not referenced.
  181: *>          Note: the user must ensure that at least max(1,M) columns are
  182: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  183: *>          is not known in advance and an upper bound must be used.
  184: *> \endverbatim
  185: *>
  186: *> \param[in] LDZ
  187: *> \verbatim
  188: *>          LDZ is INTEGER
  189: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  190: *>          JOBZ = 'V', LDZ >= max(1,N).
  191: *> \endverbatim
  192: *>
  193: *> \param[out] WORK
  194: *> \verbatim
  195: *>          WORK is COMPLEX*16 array, dimension (2*N)
  196: *> \endverbatim
  197: *>
  198: *> \param[out] RWORK
  199: *> \verbatim
  200: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  201: *> \endverbatim
  202: *>
  203: *> \param[out] IWORK
  204: *> \verbatim
  205: *>          IWORK is INTEGER array, dimension (5*N)
  206: *> \endverbatim
  207: *>
  208: *> \param[out] IFAIL
  209: *> \verbatim
  210: *>          IFAIL is INTEGER array, dimension (N)
  211: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  212: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  213: *>          indices of the eigenvectors that failed to converge.
  214: *>          If JOBZ = 'N', then IFAIL is not referenced.
  215: *> \endverbatim
  216: *>
  217: *> \param[out] INFO
  218: *> \verbatim
  219: *>          INFO is INTEGER
  220: *>          = 0:  successful exit
  221: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  222: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  223: *>                Their indices are stored in array IFAIL.
  224: *> \endverbatim
  225: *
  226: *  Authors:
  227: *  ========
  228: *
  229: *> \author Univ. of Tennessee
  230: *> \author Univ. of California Berkeley
  231: *> \author Univ. of Colorado Denver
  232: *> \author NAG Ltd.
  233: *
  234: *> \ingroup complex16OTHEReigen
  235: *
  236: *  =====================================================================
  237:       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
  238:      $                   ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
  239:      $                   IFAIL, INFO )
  240: *
  241: *  -- LAPACK driver routine --
  242: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  243: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  244: *
  245: *     .. Scalar Arguments ..
  246:       CHARACTER          JOBZ, RANGE, UPLO
  247:       INTEGER            IL, INFO, IU, LDZ, M, N
  248:       DOUBLE PRECISION   ABSTOL, VL, VU
  249: *     ..
  250: *     .. Array Arguments ..
  251:       INTEGER            IFAIL( * ), IWORK( * )
  252:       DOUBLE PRECISION   RWORK( * ), W( * )
  253:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
  254: *     ..
  255: *
  256: *  =====================================================================
  257: *
  258: *     .. Parameters ..
  259:       DOUBLE PRECISION   ZERO, ONE
  260:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  261:       COMPLEX*16         CONE
  262:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
  263: *     ..
  264: *     .. Local Scalars ..
  265:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  266:       CHARACTER          ORDER
  267:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  268:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  269:      $                   ITMP1, J, JJ, NSPLIT
  270:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  271:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  272: *     ..
  273: *     .. External Functions ..
  274:       LOGICAL            LSAME
  275:       DOUBLE PRECISION   DLAMCH, ZLANHP
  276:       EXTERNAL           LSAME, DLAMCH, ZLANHP
  277: *     ..
  278: *     .. External Subroutines ..
  279:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  280:      $                   ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
  281: *     ..
  282: *     .. Intrinsic Functions ..
  283:       INTRINSIC          DBLE, MAX, MIN, SQRT
  284: *     ..
  285: *     .. Executable Statements ..
  286: *
  287: *     Test the input parameters.
  288: *
  289:       WANTZ = LSAME( JOBZ, 'V' )
  290:       ALLEIG = LSAME( RANGE, 'A' )
  291:       VALEIG = LSAME( RANGE, 'V' )
  292:       INDEIG = LSAME( RANGE, 'I' )
  293: *
  294:       INFO = 0
  295:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  296:          INFO = -1
  297:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  298:          INFO = -2
  299:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  300:      $          THEN
  301:          INFO = -3
  302:       ELSE IF( N.LT.0 ) THEN
  303:          INFO = -4
  304:       ELSE
  305:          IF( VALEIG ) THEN
  306:             IF( N.GT.0 .AND. VU.LE.VL )
  307:      $         INFO = -7
  308:          ELSE IF( INDEIG ) THEN
  309:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  310:                INFO = -8
  311:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  312:                INFO = -9
  313:             END IF
  314:          END IF
  315:       END IF
  316:       IF( INFO.EQ.0 ) THEN
  317:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  318:      $      INFO = -14
  319:       END IF
  320: *
  321:       IF( INFO.NE.0 ) THEN
  322:          CALL XERBLA( 'ZHPEVX', -INFO )
  323:          RETURN
  324:       END IF
  325: *
  326: *     Quick return if possible
  327: *
  328:       M = 0
  329:       IF( N.EQ.0 )
  330:      $   RETURN
  331: *
  332:       IF( N.EQ.1 ) THEN
  333:          IF( ALLEIG .OR. INDEIG ) THEN
  334:             M = 1
  335:             W( 1 ) = DBLE( AP( 1 ) )
  336:          ELSE
  337:             IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
  338:                M = 1
  339:                W( 1 ) = DBLE( AP( 1 ) )
  340:             END IF
  341:          END IF
  342:          IF( WANTZ )
  343:      $      Z( 1, 1 ) = CONE
  344:          RETURN
  345:       END IF
  346: *
  347: *     Get machine constants.
  348: *
  349:       SAFMIN = DLAMCH( 'Safe minimum' )
  350:       EPS = DLAMCH( 'Precision' )
  351:       SMLNUM = SAFMIN / EPS
  352:       BIGNUM = ONE / SMLNUM
  353:       RMIN = SQRT( SMLNUM )
  354:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  355: *
  356: *     Scale matrix to allowable range, if necessary.
  357: *
  358:       ISCALE = 0
  359:       ABSTLL = ABSTOL
  360:       IF( VALEIG ) THEN
  361:          VLL = VL
  362:          VUU = VU
  363:       ELSE
  364:          VLL = ZERO
  365:          VUU = ZERO
  366:       END IF
  367:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
  368:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  369:          ISCALE = 1
  370:          SIGMA = RMIN / ANRM
  371:       ELSE IF( ANRM.GT.RMAX ) THEN
  372:          ISCALE = 1
  373:          SIGMA = RMAX / ANRM
  374:       END IF
  375:       IF( ISCALE.EQ.1 ) THEN
  376:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  377:          IF( ABSTOL.GT.0 )
  378:      $      ABSTLL = ABSTOL*SIGMA
  379:          IF( VALEIG ) THEN
  380:             VLL = VL*SIGMA
  381:             VUU = VU*SIGMA
  382:          END IF
  383:       END IF
  384: *
  385: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
  386: *
  387:       INDD = 1
  388:       INDE = INDD + N
  389:       INDRWK = INDE + N
  390:       INDTAU = 1
  391:       INDWRK = INDTAU + N
  392:       CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
  393:      $             WORK( INDTAU ), IINFO )
  394: *
  395: *     If all eigenvalues are desired and ABSTOL is less than or equal
  396: *     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails
  397: *     for some eigenvalue, then try DSTEBZ.
  398: *
  399:       TEST = .FALSE.
  400:       IF (INDEIG) THEN
  401:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  402:             TEST = .TRUE.
  403:          END IF
  404:       END IF
  405:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  406:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  407:          INDEE = INDRWK + 2*N
  408:          IF( .NOT.WANTZ ) THEN
  409:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  410:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  411:          ELSE
  412:             CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  413:      $                   WORK( INDWRK ), IINFO )
  414:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  415:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  416:      $                   RWORK( INDRWK ), INFO )
  417:             IF( INFO.EQ.0 ) THEN
  418:                DO 10 I = 1, N
  419:                   IFAIL( I ) = 0
  420:    10          CONTINUE
  421:             END IF
  422:          END IF
  423:          IF( INFO.EQ.0 ) THEN
  424:             M = N
  425:             GO TO 20
  426:          END IF
  427:          INFO = 0
  428:       END IF
  429: *
  430: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  431: *
  432:       IF( WANTZ ) THEN
  433:          ORDER = 'B'
  434:       ELSE
  435:          ORDER = 'E'
  436:       END IF
  437:       INDIBL = 1
  438:       INDISP = INDIBL + N
  439:       INDIWK = INDISP + N
  440:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  441:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  442:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  443:      $             IWORK( INDIWK ), INFO )
  444: *
  445:       IF( WANTZ ) THEN
  446:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  447:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  448:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  449: *
  450: *        Apply unitary matrix used in reduction to tridiagonal
  451: *        form to eigenvectors returned by ZSTEIN.
  452: *
  453:          INDWRK = INDTAU + N
  454:          CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
  455:      $                WORK( INDWRK ), IINFO )
  456:       END IF
  457: *
  458: *     If matrix was scaled, then rescale eigenvalues appropriately.
  459: *
  460:    20 CONTINUE
  461:       IF( ISCALE.EQ.1 ) THEN
  462:          IF( INFO.EQ.0 ) THEN
  463:             IMAX = M
  464:          ELSE
  465:             IMAX = INFO - 1
  466:          END IF
  467:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  468:       END IF
  469: *
  470: *     If eigenvalues are not in order, then sort them, along with
  471: *     eigenvectors.
  472: *
  473:       IF( WANTZ ) THEN
  474:          DO 40 J = 1, M - 1
  475:             I = 0
  476:             TMP1 = W( J )
  477:             DO 30 JJ = J + 1, M
  478:                IF( W( JJ ).LT.TMP1 ) THEN
  479:                   I = JJ
  480:                   TMP1 = W( JJ )
  481:                END IF
  482:    30       CONTINUE
  483: *
  484:             IF( I.NE.0 ) THEN
  485:                ITMP1 = IWORK( INDIBL+I-1 )
  486:                W( I ) = W( J )
  487:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  488:                W( J ) = TMP1
  489:                IWORK( INDIBL+J-1 ) = ITMP1
  490:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  491:                IF( INFO.NE.0 ) THEN
  492:                   ITMP1 = IFAIL( I )
  493:                   IFAIL( I ) = IFAIL( J )
  494:                   IFAIL( J ) = ITMP1
  495:                END IF
  496:             END IF
  497:    40    CONTINUE
  498:       END IF
  499: *
  500:       RETURN
  501: *
  502: *     End of ZHPEVX
  503: *
  504:       END

CVSweb interface <joel.bertrand@systella.fr>