Annotation of rpl/lapack/lapack/zhpevx.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                      2:      $                   ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
                      3:      $                   IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, LDZ, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   RWORK( * ), W( * )
                     18:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
                     25: *  of a complex Hermitian matrix A in packed storage.
                     26: *  Eigenvalues/vectors can be selected by specifying either a range of
                     27: *  values or a range of indices for the desired eigenvalues.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  JOBZ    (input) CHARACTER*1
                     33: *          = 'N':  Compute eigenvalues only;
                     34: *          = 'V':  Compute eigenvalues and eigenvectors.
                     35: *
                     36: *  RANGE   (input) CHARACTER*1
                     37: *          = 'A': all eigenvalues will be found;
                     38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     39: *                 will be found;
                     40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     41: *
                     42: *  UPLO    (input) CHARACTER*1
                     43: *          = 'U':  Upper triangle of A is stored;
                     44: *          = 'L':  Lower triangle of A is stored.
                     45: *
                     46: *  N       (input) INTEGER
                     47: *          The order of the matrix A.  N >= 0.
                     48: *
                     49: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
                     50: *          On entry, the upper or lower triangle of the Hermitian matrix
                     51: *          A, packed columnwise in a linear array.  The j-th column of A
                     52: *          is stored in the array AP as follows:
                     53: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     54: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     55: *
                     56: *          On exit, AP is overwritten by values generated during the
                     57: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     58: *          and first superdiagonal of the tridiagonal matrix T overwrite
                     59: *          the corresponding elements of A, and if UPLO = 'L', the
                     60: *          diagonal and first subdiagonal of T overwrite the
                     61: *          corresponding elements of A.
                     62: *
                     63: *  VL      (input) DOUBLE PRECISION
                     64: *  VU      (input) DOUBLE PRECISION
                     65: *          If RANGE='V', the lower and upper bounds of the interval to
                     66: *          be searched for eigenvalues. VL < VU.
                     67: *          Not referenced if RANGE = 'A' or 'I'.
                     68: *
                     69: *  IL      (input) INTEGER
                     70: *  IU      (input) INTEGER
                     71: *          If RANGE='I', the indices (in ascending order) of the
                     72: *          smallest and largest eigenvalues to be returned.
                     73: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     74: *          Not referenced if RANGE = 'A' or 'V'.
                     75: *
                     76: *  ABSTOL  (input) DOUBLE PRECISION
                     77: *          The absolute error tolerance for the eigenvalues.
                     78: *          An approximate eigenvalue is accepted as converged
                     79: *          when it is determined to lie in an interval [a,b]
                     80: *          of width less than or equal to
                     81: *
                     82: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                     83: *
                     84: *          where EPS is the machine precision.  If ABSTOL is less than
                     85: *          or equal to zero, then  EPS*|T|  will be used in its place,
                     86: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                     87: *          by reducing AP to tridiagonal form.
                     88: *
                     89: *          Eigenvalues will be computed most accurately when ABSTOL is
                     90: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                     91: *          If this routine returns with INFO>0, indicating that some
                     92: *          eigenvectors did not converge, try setting ABSTOL to
                     93: *          2*DLAMCH('S').
                     94: *
                     95: *          See "Computing Small Singular Values of Bidiagonal Matrices
                     96: *          with Guaranteed High Relative Accuracy," by Demmel and
                     97: *          Kahan, LAPACK Working Note #3.
                     98: *
                     99: *  M       (output) INTEGER
                    100: *          The total number of eigenvalues found.  0 <= M <= N.
                    101: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    102: *
                    103: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    104: *          If INFO = 0, the selected eigenvalues in ascending order.
                    105: *
                    106: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
                    107: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    108: *          contain the orthonormal eigenvectors of the matrix A
                    109: *          corresponding to the selected eigenvalues, with the i-th
                    110: *          column of Z holding the eigenvector associated with W(i).
                    111: *          If an eigenvector fails to converge, then that column of Z
                    112: *          contains the latest approximation to the eigenvector, and
                    113: *          the index of the eigenvector is returned in IFAIL.
                    114: *          If JOBZ = 'N', then Z is not referenced.
                    115: *          Note: the user must ensure that at least max(1,M) columns are
                    116: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    117: *          is not known in advance and an upper bound must be used.
                    118: *
                    119: *  LDZ     (input) INTEGER
                    120: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    121: *          JOBZ = 'V', LDZ >= max(1,N).
                    122: *
                    123: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    124: *
                    125: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
                    126: *
                    127: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    128: *
                    129: *  IFAIL   (output) INTEGER array, dimension (N)
                    130: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    131: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    132: *          indices of the eigenvectors that failed to converge.
                    133: *          If JOBZ = 'N', then IFAIL is not referenced.
                    134: *
                    135: *  INFO    (output) INTEGER
                    136: *          = 0:  successful exit
                    137: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    138: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    139: *                Their indices are stored in array IFAIL.
                    140: *
                    141: *  =====================================================================
                    142: *
                    143: *     .. Parameters ..
                    144:       DOUBLE PRECISION   ZERO, ONE
                    145:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    146:       COMPLEX*16         CONE
                    147:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
                    148: *     ..
                    149: *     .. Local Scalars ..
                    150:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
                    151:       CHARACTER          ORDER
                    152:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    153:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
                    154:      $                   ITMP1, J, JJ, NSPLIT
                    155:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    156:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    157: *     ..
                    158: *     .. External Functions ..
                    159:       LOGICAL            LSAME
                    160:       DOUBLE PRECISION   DLAMCH, ZLANHP
                    161:       EXTERNAL           LSAME, DLAMCH, ZLANHP
                    162: *     ..
                    163: *     .. External Subroutines ..
                    164:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    165:      $                   ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
                    166: *     ..
                    167: *     .. Intrinsic Functions ..
                    168:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    169: *     ..
                    170: *     .. Executable Statements ..
                    171: *
                    172: *     Test the input parameters.
                    173: *
                    174:       WANTZ = LSAME( JOBZ, 'V' )
                    175:       ALLEIG = LSAME( RANGE, 'A' )
                    176:       VALEIG = LSAME( RANGE, 'V' )
                    177:       INDEIG = LSAME( RANGE, 'I' )
                    178: *
                    179:       INFO = 0
                    180:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    181:          INFO = -1
                    182:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    183:          INFO = -2
                    184:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
                    185:      $          THEN
                    186:          INFO = -3
                    187:       ELSE IF( N.LT.0 ) THEN
                    188:          INFO = -4
                    189:       ELSE
                    190:          IF( VALEIG ) THEN
                    191:             IF( N.GT.0 .AND. VU.LE.VL )
                    192:      $         INFO = -7
                    193:          ELSE IF( INDEIG ) THEN
                    194:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    195:                INFO = -8
                    196:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    197:                INFO = -9
                    198:             END IF
                    199:          END IF
                    200:       END IF
                    201:       IF( INFO.EQ.0 ) THEN
                    202:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    203:      $      INFO = -14
                    204:       END IF
                    205: *
                    206:       IF( INFO.NE.0 ) THEN
                    207:          CALL XERBLA( 'ZHPEVX', -INFO )
                    208:          RETURN
                    209:       END IF
                    210: *
                    211: *     Quick return if possible
                    212: *
                    213:       M = 0
                    214:       IF( N.EQ.0 )
                    215:      $   RETURN
                    216: *
                    217:       IF( N.EQ.1 ) THEN
                    218:          IF( ALLEIG .OR. INDEIG ) THEN
                    219:             M = 1
                    220:             W( 1 ) = AP( 1 )
                    221:          ELSE
                    222:             IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
                    223:                M = 1
                    224:                W( 1 ) = AP( 1 )
                    225:             END IF
                    226:          END IF
                    227:          IF( WANTZ )
                    228:      $      Z( 1, 1 ) = CONE
                    229:          RETURN
                    230:       END IF
                    231: *
                    232: *     Get machine constants.
                    233: *
                    234:       SAFMIN = DLAMCH( 'Safe minimum' )
                    235:       EPS = DLAMCH( 'Precision' )
                    236:       SMLNUM = SAFMIN / EPS
                    237:       BIGNUM = ONE / SMLNUM
                    238:       RMIN = SQRT( SMLNUM )
                    239:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    240: *
                    241: *     Scale matrix to allowable range, if necessary.
                    242: *
                    243:       ISCALE = 0
                    244:       ABSTLL = ABSTOL
                    245:       IF( VALEIG ) THEN
                    246:          VLL = VL
                    247:          VUU = VU
                    248:       ELSE
                    249:          VLL = ZERO
                    250:          VUU = ZERO
                    251:       END IF
                    252:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
                    253:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    254:          ISCALE = 1
                    255:          SIGMA = RMIN / ANRM
                    256:       ELSE IF( ANRM.GT.RMAX ) THEN
                    257:          ISCALE = 1
                    258:          SIGMA = RMAX / ANRM
                    259:       END IF
                    260:       IF( ISCALE.EQ.1 ) THEN
                    261:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    262:          IF( ABSTOL.GT.0 )
                    263:      $      ABSTLL = ABSTOL*SIGMA
                    264:          IF( VALEIG ) THEN
                    265:             VLL = VL*SIGMA
                    266:             VUU = VU*SIGMA
                    267:          END IF
                    268:       END IF
                    269: *
                    270: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
                    271: *
                    272:       INDD = 1
                    273:       INDE = INDD + N
                    274:       INDRWK = INDE + N
                    275:       INDTAU = 1
                    276:       INDWRK = INDTAU + N
                    277:       CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
                    278:      $             WORK( INDTAU ), IINFO )
                    279: *
                    280: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    281: *     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails
                    282: *     for some eigenvalue, then try DSTEBZ.
                    283: *
                    284:       TEST = .FALSE.
                    285:       IF (INDEIG) THEN
                    286:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    287:             TEST = .TRUE.
                    288:          END IF
                    289:       END IF
                    290:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    291:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    292:          INDEE = INDRWK + 2*N
                    293:          IF( .NOT.WANTZ ) THEN
                    294:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    295:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    296:          ELSE
                    297:             CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
                    298:      $                   WORK( INDWRK ), IINFO )
                    299:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    300:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    301:      $                   RWORK( INDRWK ), INFO )
                    302:             IF( INFO.EQ.0 ) THEN
                    303:                DO 10 I = 1, N
                    304:                   IFAIL( I ) = 0
                    305:    10          CONTINUE
                    306:             END IF
                    307:          END IF
                    308:          IF( INFO.EQ.0 ) THEN
                    309:             M = N
                    310:             GO TO 20
                    311:          END IF
                    312:          INFO = 0
                    313:       END IF
                    314: *
                    315: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    316: *
                    317:       IF( WANTZ ) THEN
                    318:          ORDER = 'B'
                    319:       ELSE
                    320:          ORDER = 'E'
                    321:       END IF
                    322:       INDIBL = 1
                    323:       INDISP = INDIBL + N
                    324:       INDIWK = INDISP + N
                    325:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    326:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    327:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    328:      $             IWORK( INDIWK ), INFO )
                    329: *
                    330:       IF( WANTZ ) THEN
                    331:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    332:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    333:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    334: *
                    335: *        Apply unitary matrix used in reduction to tridiagonal
                    336: *        form to eigenvectors returned by ZSTEIN.
                    337: *
                    338:          INDWRK = INDTAU + N
                    339:          CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
                    340:      $                WORK( INDWRK ), IINFO )
                    341:       END IF
                    342: *
                    343: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    344: *
                    345:    20 CONTINUE
                    346:       IF( ISCALE.EQ.1 ) THEN
                    347:          IF( INFO.EQ.0 ) THEN
                    348:             IMAX = M
                    349:          ELSE
                    350:             IMAX = INFO - 1
                    351:          END IF
                    352:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    353:       END IF
                    354: *
                    355: *     If eigenvalues are not in order, then sort them, along with
                    356: *     eigenvectors.
                    357: *
                    358:       IF( WANTZ ) THEN
                    359:          DO 40 J = 1, M - 1
                    360:             I = 0
                    361:             TMP1 = W( J )
                    362:             DO 30 JJ = J + 1, M
                    363:                IF( W( JJ ).LT.TMP1 ) THEN
                    364:                   I = JJ
                    365:                   TMP1 = W( JJ )
                    366:                END IF
                    367:    30       CONTINUE
                    368: *
                    369:             IF( I.NE.0 ) THEN
                    370:                ITMP1 = IWORK( INDIBL+I-1 )
                    371:                W( I ) = W( J )
                    372:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    373:                W( J ) = TMP1
                    374:                IWORK( INDIBL+J-1 ) = ITMP1
                    375:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    376:                IF( INFO.NE.0 ) THEN
                    377:                   ITMP1 = IFAIL( I )
                    378:                   IFAIL( I ) = IFAIL( J )
                    379:                   IFAIL( J ) = ITMP1
                    380:                END IF
                    381:             END IF
                    382:    40    CONTINUE
                    383:       END IF
                    384: *
                    385:       RETURN
                    386: *
                    387: *     End of ZHPEVX
                    388: *
                    389:       END

CVSweb interface <joel.bertrand@systella.fr>