Annotation of rpl/lapack/lapack/zhpevx.f, revision 1.11

1.8       bertrand    1: *> \brief <b> ZHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHPEVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                     22: *                          ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
                     23: *                          IFAIL, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, IU, LDZ, M, N
                     28: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IFAIL( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     33: *       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
                     34: *       ..
                     35: *  
                     36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
                     43: *> of a complex Hermitian matrix A in packed storage.
                     44: *> Eigenvalues/vectors can be selected by specifying either a range of
                     45: *> values or a range of indices for the desired eigenvalues.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] JOBZ
                     52: *> \verbatim
                     53: *>          JOBZ is CHARACTER*1
                     54: *>          = 'N':  Compute eigenvalues only;
                     55: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] RANGE
                     59: *> \verbatim
                     60: *>          RANGE is CHARACTER*1
                     61: *>          = 'A': all eigenvalues will be found;
                     62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     63: *>                 will be found;
                     64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] UPLO
                     68: *> \verbatim
                     69: *>          UPLO is CHARACTER*1
                     70: *>          = 'U':  Upper triangle of A is stored;
                     71: *>          = 'L':  Lower triangle of A is stored.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] N
                     75: *> \verbatim
                     76: *>          N is INTEGER
                     77: *>          The order of the matrix A.  N >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in,out] AP
                     81: *> \verbatim
                     82: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     83: *>          On entry, the upper or lower triangle of the Hermitian matrix
                     84: *>          A, packed columnwise in a linear array.  The j-th column of A
                     85: *>          is stored in the array AP as follows:
                     86: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     87: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     88: *>
                     89: *>          On exit, AP is overwritten by values generated during the
                     90: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     91: *>          and first superdiagonal of the tridiagonal matrix T overwrite
                     92: *>          the corresponding elements of A, and if UPLO = 'L', the
                     93: *>          diagonal and first subdiagonal of T overwrite the
                     94: *>          corresponding elements of A.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] VL
                     98: *> \verbatim
                     99: *>          VL is DOUBLE PRECISION
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] VU
                    103: *> \verbatim
                    104: *>          VU is DOUBLE PRECISION
                    105: *>          If RANGE='V', the lower and upper bounds of the interval to
                    106: *>          be searched for eigenvalues. VL < VU.
                    107: *>          Not referenced if RANGE = 'A' or 'I'.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] IL
                    111: *> \verbatim
                    112: *>          IL is INTEGER
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] IU
                    116: *> \verbatim
                    117: *>          IU is INTEGER
                    118: *>          If RANGE='I', the indices (in ascending order) of the
                    119: *>          smallest and largest eigenvalues to be returned.
                    120: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    121: *>          Not referenced if RANGE = 'A' or 'V'.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] ABSTOL
                    125: *> \verbatim
                    126: *>          ABSTOL is DOUBLE PRECISION
                    127: *>          The absolute error tolerance for the eigenvalues.
                    128: *>          An approximate eigenvalue is accepted as converged
                    129: *>          when it is determined to lie in an interval [a,b]
                    130: *>          of width less than or equal to
                    131: *>
                    132: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    133: *>
                    134: *>          where EPS is the machine precision.  If ABSTOL is less than
                    135: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    136: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    137: *>          by reducing AP to tridiagonal form.
                    138: *>
                    139: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    140: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    141: *>          If this routine returns with INFO>0, indicating that some
                    142: *>          eigenvectors did not converge, try setting ABSTOL to
                    143: *>          2*DLAMCH('S').
                    144: *>
                    145: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    146: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    147: *>          Kahan, LAPACK Working Note #3.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] M
                    151: *> \verbatim
                    152: *>          M is INTEGER
                    153: *>          The total number of eigenvalues found.  0 <= M <= N.
                    154: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] W
                    158: *> \verbatim
                    159: *>          W is DOUBLE PRECISION array, dimension (N)
                    160: *>          If INFO = 0, the selected eigenvalues in ascending order.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] Z
                    164: *> \verbatim
                    165: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
                    166: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    167: *>          contain the orthonormal eigenvectors of the matrix A
                    168: *>          corresponding to the selected eigenvalues, with the i-th
                    169: *>          column of Z holding the eigenvector associated with W(i).
                    170: *>          If an eigenvector fails to converge, then that column of Z
                    171: *>          contains the latest approximation to the eigenvector, and
                    172: *>          the index of the eigenvector is returned in IFAIL.
                    173: *>          If JOBZ = 'N', then Z is not referenced.
                    174: *>          Note: the user must ensure that at least max(1,M) columns are
                    175: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    176: *>          is not known in advance and an upper bound must be used.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[in] LDZ
                    180: *> \verbatim
                    181: *>          LDZ is INTEGER
                    182: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    183: *>          JOBZ = 'V', LDZ >= max(1,N).
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[out] WORK
                    187: *> \verbatim
                    188: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[out] RWORK
                    192: *> \verbatim
                    193: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[out] IWORK
                    197: *> \verbatim
                    198: *>          IWORK is INTEGER array, dimension (5*N)
                    199: *> \endverbatim
                    200: *>
                    201: *> \param[out] IFAIL
                    202: *> \verbatim
                    203: *>          IFAIL is INTEGER array, dimension (N)
                    204: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    205: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    206: *>          indices of the eigenvectors that failed to converge.
                    207: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    208: *> \endverbatim
                    209: *>
                    210: *> \param[out] INFO
                    211: *> \verbatim
                    212: *>          INFO is INTEGER
                    213: *>          = 0:  successful exit
                    214: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    215: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    216: *>                Their indices are stored in array IFAIL.
                    217: *> \endverbatim
                    218: *
                    219: *  Authors:
                    220: *  ========
                    221: *
                    222: *> \author Univ. of Tennessee 
                    223: *> \author Univ. of California Berkeley 
                    224: *> \author Univ. of Colorado Denver 
                    225: *> \author NAG Ltd. 
                    226: *
                    227: *> \date November 2011
                    228: *
                    229: *> \ingroup complex16OTHEReigen
                    230: *
                    231: *  =====================================================================
1.1       bertrand  232:       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                    233:      $                   ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
                    234:      $                   IFAIL, INFO )
                    235: *
1.8       bertrand  236: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  237: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    238: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  239: *     November 2011
1.1       bertrand  240: *
                    241: *     .. Scalar Arguments ..
                    242:       CHARACTER          JOBZ, RANGE, UPLO
                    243:       INTEGER            IL, INFO, IU, LDZ, M, N
                    244:       DOUBLE PRECISION   ABSTOL, VL, VU
                    245: *     ..
                    246: *     .. Array Arguments ..
                    247:       INTEGER            IFAIL( * ), IWORK( * )
                    248:       DOUBLE PRECISION   RWORK( * ), W( * )
                    249:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
                    250: *     ..
                    251: *
                    252: *  =====================================================================
                    253: *
                    254: *     .. Parameters ..
                    255:       DOUBLE PRECISION   ZERO, ONE
                    256:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    257:       COMPLEX*16         CONE
                    258:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
                    259: *     ..
                    260: *     .. Local Scalars ..
                    261:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
                    262:       CHARACTER          ORDER
                    263:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    264:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
                    265:      $                   ITMP1, J, JJ, NSPLIT
                    266:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    267:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    268: *     ..
                    269: *     .. External Functions ..
                    270:       LOGICAL            LSAME
                    271:       DOUBLE PRECISION   DLAMCH, ZLANHP
                    272:       EXTERNAL           LSAME, DLAMCH, ZLANHP
                    273: *     ..
                    274: *     .. External Subroutines ..
                    275:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    276:      $                   ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
                    277: *     ..
                    278: *     .. Intrinsic Functions ..
                    279:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    280: *     ..
                    281: *     .. Executable Statements ..
                    282: *
                    283: *     Test the input parameters.
                    284: *
                    285:       WANTZ = LSAME( JOBZ, 'V' )
                    286:       ALLEIG = LSAME( RANGE, 'A' )
                    287:       VALEIG = LSAME( RANGE, 'V' )
                    288:       INDEIG = LSAME( RANGE, 'I' )
                    289: *
                    290:       INFO = 0
                    291:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    292:          INFO = -1
                    293:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    294:          INFO = -2
                    295:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
                    296:      $          THEN
                    297:          INFO = -3
                    298:       ELSE IF( N.LT.0 ) THEN
                    299:          INFO = -4
                    300:       ELSE
                    301:          IF( VALEIG ) THEN
                    302:             IF( N.GT.0 .AND. VU.LE.VL )
                    303:      $         INFO = -7
                    304:          ELSE IF( INDEIG ) THEN
                    305:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    306:                INFO = -8
                    307:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    308:                INFO = -9
                    309:             END IF
                    310:          END IF
                    311:       END IF
                    312:       IF( INFO.EQ.0 ) THEN
                    313:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    314:      $      INFO = -14
                    315:       END IF
                    316: *
                    317:       IF( INFO.NE.0 ) THEN
                    318:          CALL XERBLA( 'ZHPEVX', -INFO )
                    319:          RETURN
                    320:       END IF
                    321: *
                    322: *     Quick return if possible
                    323: *
                    324:       M = 0
                    325:       IF( N.EQ.0 )
                    326:      $   RETURN
                    327: *
                    328:       IF( N.EQ.1 ) THEN
                    329:          IF( ALLEIG .OR. INDEIG ) THEN
                    330:             M = 1
                    331:             W( 1 ) = AP( 1 )
                    332:          ELSE
                    333:             IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
                    334:                M = 1
                    335:                W( 1 ) = AP( 1 )
                    336:             END IF
                    337:          END IF
                    338:          IF( WANTZ )
                    339:      $      Z( 1, 1 ) = CONE
                    340:          RETURN
                    341:       END IF
                    342: *
                    343: *     Get machine constants.
                    344: *
                    345:       SAFMIN = DLAMCH( 'Safe minimum' )
                    346:       EPS = DLAMCH( 'Precision' )
                    347:       SMLNUM = SAFMIN / EPS
                    348:       BIGNUM = ONE / SMLNUM
                    349:       RMIN = SQRT( SMLNUM )
                    350:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    351: *
                    352: *     Scale matrix to allowable range, if necessary.
                    353: *
                    354:       ISCALE = 0
                    355:       ABSTLL = ABSTOL
                    356:       IF( VALEIG ) THEN
                    357:          VLL = VL
                    358:          VUU = VU
                    359:       ELSE
                    360:          VLL = ZERO
                    361:          VUU = ZERO
                    362:       END IF
                    363:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
                    364:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    365:          ISCALE = 1
                    366:          SIGMA = RMIN / ANRM
                    367:       ELSE IF( ANRM.GT.RMAX ) THEN
                    368:          ISCALE = 1
                    369:          SIGMA = RMAX / ANRM
                    370:       END IF
                    371:       IF( ISCALE.EQ.1 ) THEN
                    372:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    373:          IF( ABSTOL.GT.0 )
                    374:      $      ABSTLL = ABSTOL*SIGMA
                    375:          IF( VALEIG ) THEN
                    376:             VLL = VL*SIGMA
                    377:             VUU = VU*SIGMA
                    378:          END IF
                    379:       END IF
                    380: *
                    381: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
                    382: *
                    383:       INDD = 1
                    384:       INDE = INDD + N
                    385:       INDRWK = INDE + N
                    386:       INDTAU = 1
                    387:       INDWRK = INDTAU + N
                    388:       CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
                    389:      $             WORK( INDTAU ), IINFO )
                    390: *
                    391: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    392: *     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails
                    393: *     for some eigenvalue, then try DSTEBZ.
                    394: *
                    395:       TEST = .FALSE.
                    396:       IF (INDEIG) THEN
                    397:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    398:             TEST = .TRUE.
                    399:          END IF
                    400:       END IF
                    401:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    402:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    403:          INDEE = INDRWK + 2*N
                    404:          IF( .NOT.WANTZ ) THEN
                    405:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    406:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    407:          ELSE
                    408:             CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
                    409:      $                   WORK( INDWRK ), IINFO )
                    410:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    411:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    412:      $                   RWORK( INDRWK ), INFO )
                    413:             IF( INFO.EQ.0 ) THEN
                    414:                DO 10 I = 1, N
                    415:                   IFAIL( I ) = 0
                    416:    10          CONTINUE
                    417:             END IF
                    418:          END IF
                    419:          IF( INFO.EQ.0 ) THEN
                    420:             M = N
                    421:             GO TO 20
                    422:          END IF
                    423:          INFO = 0
                    424:       END IF
                    425: *
                    426: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    427: *
                    428:       IF( WANTZ ) THEN
                    429:          ORDER = 'B'
                    430:       ELSE
                    431:          ORDER = 'E'
                    432:       END IF
                    433:       INDIBL = 1
                    434:       INDISP = INDIBL + N
                    435:       INDIWK = INDISP + N
                    436:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    437:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    438:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    439:      $             IWORK( INDIWK ), INFO )
                    440: *
                    441:       IF( WANTZ ) THEN
                    442:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    443:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    444:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    445: *
                    446: *        Apply unitary matrix used in reduction to tridiagonal
                    447: *        form to eigenvectors returned by ZSTEIN.
                    448: *
                    449:          INDWRK = INDTAU + N
                    450:          CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
                    451:      $                WORK( INDWRK ), IINFO )
                    452:       END IF
                    453: *
                    454: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    455: *
                    456:    20 CONTINUE
                    457:       IF( ISCALE.EQ.1 ) THEN
                    458:          IF( INFO.EQ.0 ) THEN
                    459:             IMAX = M
                    460:          ELSE
                    461:             IMAX = INFO - 1
                    462:          END IF
                    463:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    464:       END IF
                    465: *
                    466: *     If eigenvalues are not in order, then sort them, along with
                    467: *     eigenvectors.
                    468: *
                    469:       IF( WANTZ ) THEN
                    470:          DO 40 J = 1, M - 1
                    471:             I = 0
                    472:             TMP1 = W( J )
                    473:             DO 30 JJ = J + 1, M
                    474:                IF( W( JJ ).LT.TMP1 ) THEN
                    475:                   I = JJ
                    476:                   TMP1 = W( JJ )
                    477:                END IF
                    478:    30       CONTINUE
                    479: *
                    480:             IF( I.NE.0 ) THEN
                    481:                ITMP1 = IWORK( INDIBL+I-1 )
                    482:                W( I ) = W( J )
                    483:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    484:                W( J ) = TMP1
                    485:                IWORK( INDIBL+J-1 ) = ITMP1
                    486:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    487:                IF( INFO.NE.0 ) THEN
                    488:                   ITMP1 = IFAIL( I )
                    489:                   IFAIL( I ) = IFAIL( J )
                    490:                   IFAIL( J ) = ITMP1
                    491:                END IF
                    492:             END IF
                    493:    40    CONTINUE
                    494:       END IF
                    495: *
                    496:       RETURN
                    497: *
                    498: *     End of ZHPEVX
                    499: *
                    500:       END

CVSweb interface <joel.bertrand@systella.fr>