Annotation of rpl/lapack/lapack/zhpevx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
        !             2:      $                   ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
        !             3:      $                   IFAIL, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBZ, RANGE, UPLO
        !            12:       INTEGER            IL, INFO, IU, LDZ, M, N
        !            13:       DOUBLE PRECISION   ABSTOL, VL, VU
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IFAIL( * ), IWORK( * )
        !            17:       DOUBLE PRECISION   RWORK( * ), W( * )
        !            18:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
        !            25: *  of a complex Hermitian matrix A in packed storage.
        !            26: *  Eigenvalues/vectors can be selected by specifying either a range of
        !            27: *  values or a range of indices for the desired eigenvalues.
        !            28: *
        !            29: *  Arguments
        !            30: *  =========
        !            31: *
        !            32: *  JOBZ    (input) CHARACTER*1
        !            33: *          = 'N':  Compute eigenvalues only;
        !            34: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            35: *
        !            36: *  RANGE   (input) CHARACTER*1
        !            37: *          = 'A': all eigenvalues will be found;
        !            38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            39: *                 will be found;
        !            40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            41: *
        !            42: *  UPLO    (input) CHARACTER*1
        !            43: *          = 'U':  Upper triangle of A is stored;
        !            44: *          = 'L':  Lower triangle of A is stored.
        !            45: *
        !            46: *  N       (input) INTEGER
        !            47: *          The order of the matrix A.  N >= 0.
        !            48: *
        !            49: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            50: *          On entry, the upper or lower triangle of the Hermitian matrix
        !            51: *          A, packed columnwise in a linear array.  The j-th column of A
        !            52: *          is stored in the array AP as follows:
        !            53: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            54: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            55: *
        !            56: *          On exit, AP is overwritten by values generated during the
        !            57: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
        !            58: *          and first superdiagonal of the tridiagonal matrix T overwrite
        !            59: *          the corresponding elements of A, and if UPLO = 'L', the
        !            60: *          diagonal and first subdiagonal of T overwrite the
        !            61: *          corresponding elements of A.
        !            62: *
        !            63: *  VL      (input) DOUBLE PRECISION
        !            64: *  VU      (input) DOUBLE PRECISION
        !            65: *          If RANGE='V', the lower and upper bounds of the interval to
        !            66: *          be searched for eigenvalues. VL < VU.
        !            67: *          Not referenced if RANGE = 'A' or 'I'.
        !            68: *
        !            69: *  IL      (input) INTEGER
        !            70: *  IU      (input) INTEGER
        !            71: *          If RANGE='I', the indices (in ascending order) of the
        !            72: *          smallest and largest eigenvalues to be returned.
        !            73: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !            74: *          Not referenced if RANGE = 'A' or 'V'.
        !            75: *
        !            76: *  ABSTOL  (input) DOUBLE PRECISION
        !            77: *          The absolute error tolerance for the eigenvalues.
        !            78: *          An approximate eigenvalue is accepted as converged
        !            79: *          when it is determined to lie in an interval [a,b]
        !            80: *          of width less than or equal to
        !            81: *
        !            82: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !            83: *
        !            84: *          where EPS is the machine precision.  If ABSTOL is less than
        !            85: *          or equal to zero, then  EPS*|T|  will be used in its place,
        !            86: *          where |T| is the 1-norm of the tridiagonal matrix obtained
        !            87: *          by reducing AP to tridiagonal form.
        !            88: *
        !            89: *          Eigenvalues will be computed most accurately when ABSTOL is
        !            90: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !            91: *          If this routine returns with INFO>0, indicating that some
        !            92: *          eigenvectors did not converge, try setting ABSTOL to
        !            93: *          2*DLAMCH('S').
        !            94: *
        !            95: *          See "Computing Small Singular Values of Bidiagonal Matrices
        !            96: *          with Guaranteed High Relative Accuracy," by Demmel and
        !            97: *          Kahan, LAPACK Working Note #3.
        !            98: *
        !            99: *  M       (output) INTEGER
        !           100: *          The total number of eigenvalues found.  0 <= M <= N.
        !           101: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           102: *
        !           103: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !           104: *          If INFO = 0, the selected eigenvalues in ascending order.
        !           105: *
        !           106: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
        !           107: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           108: *          contain the orthonormal eigenvectors of the matrix A
        !           109: *          corresponding to the selected eigenvalues, with the i-th
        !           110: *          column of Z holding the eigenvector associated with W(i).
        !           111: *          If an eigenvector fails to converge, then that column of Z
        !           112: *          contains the latest approximation to the eigenvector, and
        !           113: *          the index of the eigenvector is returned in IFAIL.
        !           114: *          If JOBZ = 'N', then Z is not referenced.
        !           115: *          Note: the user must ensure that at least max(1,M) columns are
        !           116: *          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           117: *          is not known in advance and an upper bound must be used.
        !           118: *
        !           119: *  LDZ     (input) INTEGER
        !           120: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           121: *          JOBZ = 'V', LDZ >= max(1,N).
        !           122: *
        !           123: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           124: *
        !           125: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
        !           126: *
        !           127: *  IWORK   (workspace) INTEGER array, dimension (5*N)
        !           128: *
        !           129: *  IFAIL   (output) INTEGER array, dimension (N)
        !           130: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           131: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           132: *          indices of the eigenvectors that failed to converge.
        !           133: *          If JOBZ = 'N', then IFAIL is not referenced.
        !           134: *
        !           135: *  INFO    (output) INTEGER
        !           136: *          = 0:  successful exit
        !           137: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           138: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
        !           139: *                Their indices are stored in array IFAIL.
        !           140: *
        !           141: *  =====================================================================
        !           142: *
        !           143: *     .. Parameters ..
        !           144:       DOUBLE PRECISION   ZERO, ONE
        !           145:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           146:       COMPLEX*16         CONE
        !           147:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
        !           148: *     ..
        !           149: *     .. Local Scalars ..
        !           150:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
        !           151:       CHARACTER          ORDER
        !           152:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
        !           153:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
        !           154:      $                   ITMP1, J, JJ, NSPLIT
        !           155:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
        !           156:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
        !           157: *     ..
        !           158: *     .. External Functions ..
        !           159:       LOGICAL            LSAME
        !           160:       DOUBLE PRECISION   DLAMCH, ZLANHP
        !           161:       EXTERNAL           LSAME, DLAMCH, ZLANHP
        !           162: *     ..
        !           163: *     .. External Subroutines ..
        !           164:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
        !           165:      $                   ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
        !           166: *     ..
        !           167: *     .. Intrinsic Functions ..
        !           168:       INTRINSIC          DBLE, MAX, MIN, SQRT
        !           169: *     ..
        !           170: *     .. Executable Statements ..
        !           171: *
        !           172: *     Test the input parameters.
        !           173: *
        !           174:       WANTZ = LSAME( JOBZ, 'V' )
        !           175:       ALLEIG = LSAME( RANGE, 'A' )
        !           176:       VALEIG = LSAME( RANGE, 'V' )
        !           177:       INDEIG = LSAME( RANGE, 'I' )
        !           178: *
        !           179:       INFO = 0
        !           180:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           181:          INFO = -1
        !           182:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           183:          INFO = -2
        !           184:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
        !           185:      $          THEN
        !           186:          INFO = -3
        !           187:       ELSE IF( N.LT.0 ) THEN
        !           188:          INFO = -4
        !           189:       ELSE
        !           190:          IF( VALEIG ) THEN
        !           191:             IF( N.GT.0 .AND. VU.LE.VL )
        !           192:      $         INFO = -7
        !           193:          ELSE IF( INDEIG ) THEN
        !           194:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           195:                INFO = -8
        !           196:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           197:                INFO = -9
        !           198:             END IF
        !           199:          END IF
        !           200:       END IF
        !           201:       IF( INFO.EQ.0 ) THEN
        !           202:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
        !           203:      $      INFO = -14
        !           204:       END IF
        !           205: *
        !           206:       IF( INFO.NE.0 ) THEN
        !           207:          CALL XERBLA( 'ZHPEVX', -INFO )
        !           208:          RETURN
        !           209:       END IF
        !           210: *
        !           211: *     Quick return if possible
        !           212: *
        !           213:       M = 0
        !           214:       IF( N.EQ.0 )
        !           215:      $   RETURN
        !           216: *
        !           217:       IF( N.EQ.1 ) THEN
        !           218:          IF( ALLEIG .OR. INDEIG ) THEN
        !           219:             M = 1
        !           220:             W( 1 ) = AP( 1 )
        !           221:          ELSE
        !           222:             IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
        !           223:                M = 1
        !           224:                W( 1 ) = AP( 1 )
        !           225:             END IF
        !           226:          END IF
        !           227:          IF( WANTZ )
        !           228:      $      Z( 1, 1 ) = CONE
        !           229:          RETURN
        !           230:       END IF
        !           231: *
        !           232: *     Get machine constants.
        !           233: *
        !           234:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           235:       EPS = DLAMCH( 'Precision' )
        !           236:       SMLNUM = SAFMIN / EPS
        !           237:       BIGNUM = ONE / SMLNUM
        !           238:       RMIN = SQRT( SMLNUM )
        !           239:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
        !           240: *
        !           241: *     Scale matrix to allowable range, if necessary.
        !           242: *
        !           243:       ISCALE = 0
        !           244:       ABSTLL = ABSTOL
        !           245:       IF( VALEIG ) THEN
        !           246:          VLL = VL
        !           247:          VUU = VU
        !           248:       ELSE
        !           249:          VLL = ZERO
        !           250:          VUU = ZERO
        !           251:       END IF
        !           252:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
        !           253:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           254:          ISCALE = 1
        !           255:          SIGMA = RMIN / ANRM
        !           256:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           257:          ISCALE = 1
        !           258:          SIGMA = RMAX / ANRM
        !           259:       END IF
        !           260:       IF( ISCALE.EQ.1 ) THEN
        !           261:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
        !           262:          IF( ABSTOL.GT.0 )
        !           263:      $      ABSTLL = ABSTOL*SIGMA
        !           264:          IF( VALEIG ) THEN
        !           265:             VLL = VL*SIGMA
        !           266:             VUU = VU*SIGMA
        !           267:          END IF
        !           268:       END IF
        !           269: *
        !           270: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
        !           271: *
        !           272:       INDD = 1
        !           273:       INDE = INDD + N
        !           274:       INDRWK = INDE + N
        !           275:       INDTAU = 1
        !           276:       INDWRK = INDTAU + N
        !           277:       CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
        !           278:      $             WORK( INDTAU ), IINFO )
        !           279: *
        !           280: *     If all eigenvalues are desired and ABSTOL is less than or equal
        !           281: *     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails
        !           282: *     for some eigenvalue, then try DSTEBZ.
        !           283: *
        !           284:       TEST = .FALSE.
        !           285:       IF (INDEIG) THEN
        !           286:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
        !           287:             TEST = .TRUE.
        !           288:          END IF
        !           289:       END IF
        !           290:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
        !           291:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
        !           292:          INDEE = INDRWK + 2*N
        !           293:          IF( .NOT.WANTZ ) THEN
        !           294:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
        !           295:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
        !           296:          ELSE
        !           297:             CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
        !           298:      $                   WORK( INDWRK ), IINFO )
        !           299:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
        !           300:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
        !           301:      $                   RWORK( INDRWK ), INFO )
        !           302:             IF( INFO.EQ.0 ) THEN
        !           303:                DO 10 I = 1, N
        !           304:                   IFAIL( I ) = 0
        !           305:    10          CONTINUE
        !           306:             END IF
        !           307:          END IF
        !           308:          IF( INFO.EQ.0 ) THEN
        !           309:             M = N
        !           310:             GO TO 20
        !           311:          END IF
        !           312:          INFO = 0
        !           313:       END IF
        !           314: *
        !           315: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
        !           316: *
        !           317:       IF( WANTZ ) THEN
        !           318:          ORDER = 'B'
        !           319:       ELSE
        !           320:          ORDER = 'E'
        !           321:       END IF
        !           322:       INDIBL = 1
        !           323:       INDISP = INDIBL + N
        !           324:       INDIWK = INDISP + N
        !           325:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
        !           326:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
        !           327:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
        !           328:      $             IWORK( INDIWK ), INFO )
        !           329: *
        !           330:       IF( WANTZ ) THEN
        !           331:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
        !           332:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
        !           333:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
        !           334: *
        !           335: *        Apply unitary matrix used in reduction to tridiagonal
        !           336: *        form to eigenvectors returned by ZSTEIN.
        !           337: *
        !           338:          INDWRK = INDTAU + N
        !           339:          CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
        !           340:      $                WORK( INDWRK ), IINFO )
        !           341:       END IF
        !           342: *
        !           343: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           344: *
        !           345:    20 CONTINUE
        !           346:       IF( ISCALE.EQ.1 ) THEN
        !           347:          IF( INFO.EQ.0 ) THEN
        !           348:             IMAX = M
        !           349:          ELSE
        !           350:             IMAX = INFO - 1
        !           351:          END IF
        !           352:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           353:       END IF
        !           354: *
        !           355: *     If eigenvalues are not in order, then sort them, along with
        !           356: *     eigenvectors.
        !           357: *
        !           358:       IF( WANTZ ) THEN
        !           359:          DO 40 J = 1, M - 1
        !           360:             I = 0
        !           361:             TMP1 = W( J )
        !           362:             DO 30 JJ = J + 1, M
        !           363:                IF( W( JJ ).LT.TMP1 ) THEN
        !           364:                   I = JJ
        !           365:                   TMP1 = W( JJ )
        !           366:                END IF
        !           367:    30       CONTINUE
        !           368: *
        !           369:             IF( I.NE.0 ) THEN
        !           370:                ITMP1 = IWORK( INDIBL+I-1 )
        !           371:                W( I ) = W( J )
        !           372:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
        !           373:                W( J ) = TMP1
        !           374:                IWORK( INDIBL+J-1 ) = ITMP1
        !           375:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           376:                IF( INFO.NE.0 ) THEN
        !           377:                   ITMP1 = IFAIL( I )
        !           378:                   IFAIL( I ) = IFAIL( J )
        !           379:                   IFAIL( J ) = ITMP1
        !           380:                END IF
        !           381:             END IF
        !           382:    40    CONTINUE
        !           383:       END IF
        !           384: *
        !           385:       RETURN
        !           386: *
        !           387: *     End of ZHPEVX
        !           388: *
        !           389:       END

CVSweb interface <joel.bertrand@systella.fr>