File:  [local] / rpl / lapack / lapack / zhpevd.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:32 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
    2:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBZ, UPLO
   11:       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            IWORK( * )
   15:       DOUBLE PRECISION   RWORK( * ), W( * )
   16:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
   23: *  a complex Hermitian matrix A in packed storage.  If eigenvectors are
   24: *  desired, it uses a divide and conquer algorithm.
   25: *
   26: *  The divide and conquer algorithm makes very mild assumptions about
   27: *  floating point arithmetic. It will work on machines with a guard
   28: *  digit in add/subtract, or on those binary machines without guard
   29: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   30: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
   31: *  without guard digits, but we know of none.
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *  JOBZ    (input) CHARACTER*1
   37: *          = 'N':  Compute eigenvalues only;
   38: *          = 'V':  Compute eigenvalues and eigenvectors.
   39: *
   40: *  UPLO    (input) CHARACTER*1
   41: *          = 'U':  Upper triangle of A is stored;
   42: *          = 'L':  Lower triangle of A is stored.
   43: *
   44: *  N       (input) INTEGER
   45: *          The order of the matrix A.  N >= 0.
   46: *
   47: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   48: *          On entry, the upper or lower triangle of the Hermitian matrix
   49: *          A, packed columnwise in a linear array.  The j-th column of A
   50: *          is stored in the array AP as follows:
   51: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   52: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   53: *
   54: *          On exit, AP is overwritten by values generated during the
   55: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
   56: *          and first superdiagonal of the tridiagonal matrix T overwrite
   57: *          the corresponding elements of A, and if UPLO = 'L', the
   58: *          diagonal and first subdiagonal of T overwrite the
   59: *          corresponding elements of A.
   60: *
   61: *  W       (output) DOUBLE PRECISION array, dimension (N)
   62: *          If INFO = 0, the eigenvalues in ascending order.
   63: *
   64: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
   65: *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
   66: *          eigenvectors of the matrix A, with the i-th column of Z
   67: *          holding the eigenvector associated with W(i).
   68: *          If JOBZ = 'N', then Z is not referenced.
   69: *
   70: *  LDZ     (input) INTEGER
   71: *          The leading dimension of the array Z.  LDZ >= 1, and if
   72: *          JOBZ = 'V', LDZ >= max(1,N).
   73: *
   74: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   75: *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
   76: *
   77: *  LWORK   (input) INTEGER
   78: *          The dimension of array WORK.
   79: *          If N <= 1,               LWORK must be at least 1.
   80: *          If JOBZ = 'N' and N > 1, LWORK must be at least N.
   81: *          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
   82: *
   83: *          If LWORK = -1, then a workspace query is assumed; the routine
   84: *          only calculates the required sizes of the WORK, RWORK and
   85: *          IWORK arrays, returns these values as the first entries of
   86: *          the WORK, RWORK and IWORK arrays, and no error message
   87: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
   88: *
   89: *  RWORK   (workspace/output) DOUBLE PRECISION array,
   90: *                                         dimension (LRWORK)
   91: *          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
   92: *
   93: *  LRWORK  (input) INTEGER
   94: *          The dimension of array RWORK.
   95: *          If N <= 1,               LRWORK must be at least 1.
   96: *          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
   97: *          If JOBZ = 'V' and N > 1, LRWORK must be at least
   98: *                    1 + 5*N + 2*N**2.
   99: *
  100: *          If LRWORK = -1, then a workspace query is assumed; the
  101: *          routine only calculates the required sizes of the WORK, RWORK
  102: *          and IWORK arrays, returns these values as the first entries
  103: *          of the WORK, RWORK and IWORK arrays, and no error message
  104: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  105: *
  106: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
  107: *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
  108: *
  109: *  LIWORK  (input) INTEGER
  110: *          The dimension of array IWORK.
  111: *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
  112: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
  113: *
  114: *          If LIWORK = -1, then a workspace query is assumed; the
  115: *          routine only calculates the required sizes of the WORK, RWORK
  116: *          and IWORK arrays, returns these values as the first entries
  117: *          of the WORK, RWORK and IWORK arrays, and no error message
  118: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  119: *
  120: *  INFO    (output) INTEGER
  121: *          = 0:  successful exit
  122: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  123: *          > 0:  if INFO = i, the algorithm failed to converge; i
  124: *                off-diagonal elements of an intermediate tridiagonal
  125: *                form did not converge to zero.
  126: *
  127: *  =====================================================================
  128: *
  129: *     .. Parameters ..
  130:       DOUBLE PRECISION   ZERO, ONE
  131:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  132:       COMPLEX*16         CONE
  133:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  134: *     ..
  135: *     .. Local Scalars ..
  136:       LOGICAL            LQUERY, WANTZ
  137:       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
  138:      $                   ISCALE, LIWMIN, LLRWK, LLWRK, LRWMIN, LWMIN
  139:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  140:      $                   SMLNUM
  141: *     ..
  142: *     .. External Functions ..
  143:       LOGICAL            LSAME
  144:       DOUBLE PRECISION   DLAMCH, ZLANHP
  145:       EXTERNAL           LSAME, DLAMCH, ZLANHP
  146: *     ..
  147: *     .. External Subroutines ..
  148:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEDC,
  149:      $                   ZUPMTR
  150: *     ..
  151: *     .. Intrinsic Functions ..
  152:       INTRINSIC          SQRT
  153: *     ..
  154: *     .. Executable Statements ..
  155: *
  156: *     Test the input parameters.
  157: *
  158:       WANTZ = LSAME( JOBZ, 'V' )
  159:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  160: *
  161:       INFO = 0
  162:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  163:          INFO = -1
  164:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  165:      $          THEN
  166:          INFO = -2
  167:       ELSE IF( N.LT.0 ) THEN
  168:          INFO = -3
  169:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  170:          INFO = -7
  171:       END IF
  172: *
  173:       IF( INFO.EQ.0 ) THEN
  174:          IF( N.LE.1 ) THEN
  175:             LWMIN = 1
  176:             LIWMIN = 1
  177:             LRWMIN = 1
  178:          ELSE
  179:             IF( WANTZ ) THEN
  180:                LWMIN = 2*N
  181:                LRWMIN = 1 + 5*N + 2*N**2
  182:                LIWMIN = 3 + 5*N
  183:             ELSE
  184:                LWMIN = N
  185:                LRWMIN = N
  186:                LIWMIN = 1
  187:             END IF
  188:          END IF
  189:          WORK( 1 ) = LWMIN
  190:          RWORK( 1 ) = LRWMIN
  191:          IWORK( 1 ) = LIWMIN
  192: *
  193:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  194:             INFO = -9
  195:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  196:             INFO = -11
  197:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  198:             INFO = -13
  199:          END IF
  200:       END IF
  201: *
  202:       IF( INFO.NE.0 ) THEN
  203:          CALL XERBLA( 'ZHPEVD', -INFO )
  204:          RETURN
  205:       ELSE IF( LQUERY ) THEN
  206:          RETURN
  207:       END IF
  208: *
  209: *     Quick return if possible
  210: *
  211:       IF( N.EQ.0 )
  212:      $   RETURN
  213: *
  214:       IF( N.EQ.1 ) THEN
  215:          W( 1 ) = AP( 1 )
  216:          IF( WANTZ )
  217:      $      Z( 1, 1 ) = CONE
  218:          RETURN
  219:       END IF
  220: *
  221: *     Get machine constants.
  222: *
  223:       SAFMIN = DLAMCH( 'Safe minimum' )
  224:       EPS = DLAMCH( 'Precision' )
  225:       SMLNUM = SAFMIN / EPS
  226:       BIGNUM = ONE / SMLNUM
  227:       RMIN = SQRT( SMLNUM )
  228:       RMAX = SQRT( BIGNUM )
  229: *
  230: *     Scale matrix to allowable range, if necessary.
  231: *
  232:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
  233:       ISCALE = 0
  234:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  235:          ISCALE = 1
  236:          SIGMA = RMIN / ANRM
  237:       ELSE IF( ANRM.GT.RMAX ) THEN
  238:          ISCALE = 1
  239:          SIGMA = RMAX / ANRM
  240:       END IF
  241:       IF( ISCALE.EQ.1 ) THEN
  242:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  243:       END IF
  244: *
  245: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
  246: *
  247:       INDE = 1
  248:       INDTAU = 1
  249:       INDRWK = INDE + N
  250:       INDWRK = INDTAU + N
  251:       LLWRK = LWORK - INDWRK + 1
  252:       LLRWK = LRWORK - INDRWK + 1
  253:       CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
  254:      $             IINFO )
  255: *
  256: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
  257: *     ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
  258: *
  259:       IF( .NOT.WANTZ ) THEN
  260:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
  261:       ELSE
  262:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), Z, LDZ, WORK( INDWRK ),
  263:      $                LLWRK, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
  264:      $                INFO )
  265:          CALL ZUPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
  266:      $                WORK( INDWRK ), IINFO )
  267:       END IF
  268: *
  269: *     If matrix was scaled, then rescale eigenvalues appropriately.
  270: *
  271:       IF( ISCALE.EQ.1 ) THEN
  272:          IF( INFO.EQ.0 ) THEN
  273:             IMAX = N
  274:          ELSE
  275:             IMAX = INFO - 1
  276:          END IF
  277:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  278:       END IF
  279: *
  280:       WORK( 1 ) = LWMIN
  281:       RWORK( 1 ) = LRWMIN
  282:       IWORK( 1 ) = LIWMIN
  283:       RETURN
  284: *
  285: *     End of ZHPEVD
  286: *
  287:       END

CVSweb interface <joel.bertrand@systella.fr>