Annotation of rpl/lapack/lapack/zhpevd.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
                      2:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   RWORK( * ), W( * )
                     16:       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
                     23: *  a complex Hermitian matrix A in packed storage.  If eigenvectors are
                     24: *  desired, it uses a divide and conquer algorithm.
                     25: *
                     26: *  The divide and conquer algorithm makes very mild assumptions about
                     27: *  floating point arithmetic. It will work on machines with a guard
                     28: *  digit in add/subtract, or on those binary machines without guard
                     29: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     30: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     31: *  without guard digits, but we know of none.
                     32: *
                     33: *  Arguments
                     34: *  =========
                     35: *
                     36: *  JOBZ    (input) CHARACTER*1
                     37: *          = 'N':  Compute eigenvalues only;
                     38: *          = 'V':  Compute eigenvalues and eigenvectors.
                     39: *
                     40: *  UPLO    (input) CHARACTER*1
                     41: *          = 'U':  Upper triangle of A is stored;
                     42: *          = 'L':  Lower triangle of A is stored.
                     43: *
                     44: *  N       (input) INTEGER
                     45: *          The order of the matrix A.  N >= 0.
                     46: *
                     47: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
                     48: *          On entry, the upper or lower triangle of the Hermitian matrix
                     49: *          A, packed columnwise in a linear array.  The j-th column of A
                     50: *          is stored in the array AP as follows:
                     51: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     52: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     53: *
                     54: *          On exit, AP is overwritten by values generated during the
                     55: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     56: *          and first superdiagonal of the tridiagonal matrix T overwrite
                     57: *          the corresponding elements of A, and if UPLO = 'L', the
                     58: *          diagonal and first subdiagonal of T overwrite the
                     59: *          corresponding elements of A.
                     60: *
                     61: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     62: *          If INFO = 0, the eigenvalues in ascending order.
                     63: *
                     64: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
                     65: *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     66: *          eigenvectors of the matrix A, with the i-th column of Z
                     67: *          holding the eigenvector associated with W(i).
                     68: *          If JOBZ = 'N', then Z is not referenced.
                     69: *
                     70: *  LDZ     (input) INTEGER
                     71: *          The leading dimension of the array Z.  LDZ >= 1, and if
                     72: *          JOBZ = 'V', LDZ >= max(1,N).
                     73: *
                     74: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     75: *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
                     76: *
                     77: *  LWORK   (input) INTEGER
                     78: *          The dimension of array WORK.
                     79: *          If N <= 1,               LWORK must be at least 1.
                     80: *          If JOBZ = 'N' and N > 1, LWORK must be at least N.
                     81: *          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
                     82: *
                     83: *          If LWORK = -1, then a workspace query is assumed; the routine
                     84: *          only calculates the required sizes of the WORK, RWORK and
                     85: *          IWORK arrays, returns these values as the first entries of
                     86: *          the WORK, RWORK and IWORK arrays, and no error message
                     87: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                     88: *
                     89: *  RWORK   (workspace/output) DOUBLE PRECISION array,
                     90: *                                         dimension (LRWORK)
                     91: *          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
                     92: *
                     93: *  LRWORK  (input) INTEGER
                     94: *          The dimension of array RWORK.
                     95: *          If N <= 1,               LRWORK must be at least 1.
                     96: *          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
                     97: *          If JOBZ = 'V' and N > 1, LRWORK must be at least
                     98: *                    1 + 5*N + 2*N**2.
                     99: *
                    100: *          If LRWORK = -1, then a workspace query is assumed; the
                    101: *          routine only calculates the required sizes of the WORK, RWORK
                    102: *          and IWORK arrays, returns these values as the first entries
                    103: *          of the WORK, RWORK and IWORK arrays, and no error message
                    104: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    105: *
                    106: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    107: *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
                    108: *
                    109: *  LIWORK  (input) INTEGER
                    110: *          The dimension of array IWORK.
                    111: *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
                    112: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
                    113: *
                    114: *          If LIWORK = -1, then a workspace query is assumed; the
                    115: *          routine only calculates the required sizes of the WORK, RWORK
                    116: *          and IWORK arrays, returns these values as the first entries
                    117: *          of the WORK, RWORK and IWORK arrays, and no error message
                    118: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    119: *
                    120: *  INFO    (output) INTEGER
                    121: *          = 0:  successful exit
                    122: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    123: *          > 0:  if INFO = i, the algorithm failed to converge; i
                    124: *                off-diagonal elements of an intermediate tridiagonal
                    125: *                form did not converge to zero.
                    126: *
                    127: *  =====================================================================
                    128: *
                    129: *     .. Parameters ..
                    130:       DOUBLE PRECISION   ZERO, ONE
                    131:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    132:       COMPLEX*16         CONE
                    133:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    134: *     ..
                    135: *     .. Local Scalars ..
                    136:       LOGICAL            LQUERY, WANTZ
                    137:       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
                    138:      $                   ISCALE, LIWMIN, LLRWK, LLWRK, LRWMIN, LWMIN
                    139:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    140:      $                   SMLNUM
                    141: *     ..
                    142: *     .. External Functions ..
                    143:       LOGICAL            LSAME
                    144:       DOUBLE PRECISION   DLAMCH, ZLANHP
                    145:       EXTERNAL           LSAME, DLAMCH, ZLANHP
                    146: *     ..
                    147: *     .. External Subroutines ..
                    148:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEDC,
                    149:      $                   ZUPMTR
                    150: *     ..
                    151: *     .. Intrinsic Functions ..
                    152:       INTRINSIC          SQRT
                    153: *     ..
                    154: *     .. Executable Statements ..
                    155: *
                    156: *     Test the input parameters.
                    157: *
                    158:       WANTZ = LSAME( JOBZ, 'V' )
                    159:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    160: *
                    161:       INFO = 0
                    162:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    163:          INFO = -1
                    164:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
                    165:      $          THEN
                    166:          INFO = -2
                    167:       ELSE IF( N.LT.0 ) THEN
                    168:          INFO = -3
                    169:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    170:          INFO = -7
                    171:       END IF
                    172: *
                    173:       IF( INFO.EQ.0 ) THEN
                    174:          IF( N.LE.1 ) THEN
                    175:             LWMIN = 1
                    176:             LIWMIN = 1
                    177:             LRWMIN = 1
                    178:          ELSE
                    179:             IF( WANTZ ) THEN
                    180:                LWMIN = 2*N
                    181:                LRWMIN = 1 + 5*N + 2*N**2
                    182:                LIWMIN = 3 + 5*N
                    183:             ELSE
                    184:                LWMIN = N
                    185:                LRWMIN = N
                    186:                LIWMIN = 1
                    187:             END IF
                    188:          END IF
                    189:          WORK( 1 ) = LWMIN
                    190:          RWORK( 1 ) = LRWMIN
                    191:          IWORK( 1 ) = LIWMIN
                    192: *
                    193:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    194:             INFO = -9
                    195:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    196:             INFO = -11
                    197:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    198:             INFO = -13
                    199:          END IF
                    200:       END IF
                    201: *
                    202:       IF( INFO.NE.0 ) THEN
                    203:          CALL XERBLA( 'ZHPEVD', -INFO )
                    204:          RETURN
                    205:       ELSE IF( LQUERY ) THEN
                    206:          RETURN
                    207:       END IF
                    208: *
                    209: *     Quick return if possible
                    210: *
                    211:       IF( N.EQ.0 )
                    212:      $   RETURN
                    213: *
                    214:       IF( N.EQ.1 ) THEN
                    215:          W( 1 ) = AP( 1 )
                    216:          IF( WANTZ )
                    217:      $      Z( 1, 1 ) = CONE
                    218:          RETURN
                    219:       END IF
                    220: *
                    221: *     Get machine constants.
                    222: *
                    223:       SAFMIN = DLAMCH( 'Safe minimum' )
                    224:       EPS = DLAMCH( 'Precision' )
                    225:       SMLNUM = SAFMIN / EPS
                    226:       BIGNUM = ONE / SMLNUM
                    227:       RMIN = SQRT( SMLNUM )
                    228:       RMAX = SQRT( BIGNUM )
                    229: *
                    230: *     Scale matrix to allowable range, if necessary.
                    231: *
                    232:       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
                    233:       ISCALE = 0
                    234:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    235:          ISCALE = 1
                    236:          SIGMA = RMIN / ANRM
                    237:       ELSE IF( ANRM.GT.RMAX ) THEN
                    238:          ISCALE = 1
                    239:          SIGMA = RMAX / ANRM
                    240:       END IF
                    241:       IF( ISCALE.EQ.1 ) THEN
                    242:          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    243:       END IF
                    244: *
                    245: *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
                    246: *
                    247:       INDE = 1
                    248:       INDTAU = 1
                    249:       INDRWK = INDE + N
                    250:       INDWRK = INDTAU + N
                    251:       LLWRK = LWORK - INDWRK + 1
                    252:       LLRWK = LRWORK - INDRWK + 1
                    253:       CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
                    254:      $             IINFO )
                    255: *
                    256: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    257: *     ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
                    258: *
                    259:       IF( .NOT.WANTZ ) THEN
                    260:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    261:       ELSE
                    262:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), Z, LDZ, WORK( INDWRK ),
                    263:      $                LLWRK, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
                    264:      $                INFO )
                    265:          CALL ZUPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
                    266:      $                WORK( INDWRK ), IINFO )
                    267:       END IF
                    268: *
                    269: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    270: *
                    271:       IF( ISCALE.EQ.1 ) THEN
                    272:          IF( INFO.EQ.0 ) THEN
                    273:             IMAX = N
                    274:          ELSE
                    275:             IMAX = INFO - 1
                    276:          END IF
                    277:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    278:       END IF
                    279: *
                    280:       WORK( 1 ) = LWMIN
                    281:       RWORK( 1 ) = LRWMIN
                    282:       IWORK( 1 ) = LIWMIN
                    283:       RETURN
                    284: *
                    285: *     End of ZHPEVD
                    286: *
                    287:       END

CVSweb interface <joel.bertrand@systella.fr>