File:  [local] / rpl / lapack / lapack / zhgeqz.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:16 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZHGEQZ
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHGEQZ + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhgeqz.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhgeqz.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhgeqz.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
   22: *                          ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
   23: *                          RWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          COMPQ, COMPZ, JOB
   27: *       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   RWORK( * )
   31: *       COMPLEX*16         ALPHA( * ), BETA( * ), H( LDH, * ),
   32: *      $                   Q( LDQ, * ), T( LDT, * ), WORK( * ),
   33: *      $                   Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
   43: *> where H is an upper Hessenberg matrix and T is upper triangular,
   44: *> using the single-shift QZ method.
   45: *> Matrix pairs of this type are produced by the reduction to
   46: *> generalized upper Hessenberg form of a complex matrix pair (A,B):
   47: *>
   48: *>    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,
   49: *>
   50: *> as computed by ZGGHRD.
   51: *>
   52: *> If JOB='S', then the Hessenberg-triangular pair (H,T) is
   53: *> also reduced to generalized Schur form,
   54: *>
   55: *>    H = Q*S*Z**H,  T = Q*P*Z**H,
   56: *>
   57: *> where Q and Z are unitary matrices and S and P are upper triangular.
   58: *>
   59: *> Optionally, the unitary matrix Q from the generalized Schur
   60: *> factorization may be postmultiplied into an input matrix Q1, and the
   61: *> unitary matrix Z may be postmultiplied into an input matrix Z1.
   62: *> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
   63: *> the matrix pair (A,B) to generalized Hessenberg form, then the output
   64: *> matrices Q1*Q and Z1*Z are the unitary factors from the generalized
   65: *> Schur factorization of (A,B):
   66: *>
   67: *>    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.
   68: *>
   69: *> To avoid overflow, eigenvalues of the matrix pair (H,T)
   70: *> (equivalently, of (A,B)) are computed as a pair of complex values
   71: *> (alpha,beta).  If beta is nonzero, lambda = alpha / beta is an
   72: *> eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
   73: *>    A*x = lambda*B*x
   74: *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
   75: *> alternate form of the GNEP
   76: *>    mu*A*y = B*y.
   77: *> The values of alpha and beta for the i-th eigenvalue can be read
   78: *> directly from the generalized Schur form:  alpha = S(i,i),
   79: *> beta = P(i,i).
   80: *>
   81: *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
   82: *>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
   83: *>      pp. 241--256.
   84: *> \endverbatim
   85: *
   86: *  Arguments:
   87: *  ==========
   88: *
   89: *> \param[in] JOB
   90: *> \verbatim
   91: *>          JOB is CHARACTER*1
   92: *>          = 'E': Compute eigenvalues only;
   93: *>          = 'S': Computer eigenvalues and the Schur form.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] COMPQ
   97: *> \verbatim
   98: *>          COMPQ is CHARACTER*1
   99: *>          = 'N': Left Schur vectors (Q) are not computed;
  100: *>          = 'I': Q is initialized to the unit matrix and the matrix Q
  101: *>                 of left Schur vectors of (H,T) is returned;
  102: *>          = 'V': Q must contain a unitary matrix Q1 on entry and
  103: *>                 the product Q1*Q is returned.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] COMPZ
  107: *> \verbatim
  108: *>          COMPZ is CHARACTER*1
  109: *>          = 'N': Right Schur vectors (Z) are not computed;
  110: *>          = 'I': Q is initialized to the unit matrix and the matrix Z
  111: *>                 of right Schur vectors of (H,T) is returned;
  112: *>          = 'V': Z must contain a unitary matrix Z1 on entry and
  113: *>                 the product Z1*Z is returned.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] N
  117: *> \verbatim
  118: *>          N is INTEGER
  119: *>          The order of the matrices H, T, Q, and Z.  N >= 0.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] ILO
  123: *> \verbatim
  124: *>          ILO is INTEGER
  125: *> \endverbatim
  126: *>
  127: *> \param[in] IHI
  128: *> \verbatim
  129: *>          IHI is INTEGER
  130: *>          ILO and IHI mark the rows and columns of H which are in
  131: *>          Hessenberg form.  It is assumed that A is already upper
  132: *>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
  133: *>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] H
  137: *> \verbatim
  138: *>          H is COMPLEX*16 array, dimension (LDH, N)
  139: *>          On entry, the N-by-N upper Hessenberg matrix H.
  140: *>          On exit, if JOB = 'S', H contains the upper triangular
  141: *>          matrix S from the generalized Schur factorization.
  142: *>          If JOB = 'E', the diagonal of H matches that of S, but
  143: *>          the rest of H is unspecified.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDH
  147: *> \verbatim
  148: *>          LDH is INTEGER
  149: *>          The leading dimension of the array H.  LDH >= max( 1, N ).
  150: *> \endverbatim
  151: *>
  152: *> \param[in,out] T
  153: *> \verbatim
  154: *>          T is COMPLEX*16 array, dimension (LDT, N)
  155: *>          On entry, the N-by-N upper triangular matrix T.
  156: *>          On exit, if JOB = 'S', T contains the upper triangular
  157: *>          matrix P from the generalized Schur factorization.
  158: *>          If JOB = 'E', the diagonal of T matches that of P, but
  159: *>          the rest of T is unspecified.
  160: *> \endverbatim
  161: *>
  162: *> \param[in] LDT
  163: *> \verbatim
  164: *>          LDT is INTEGER
  165: *>          The leading dimension of the array T.  LDT >= max( 1, N ).
  166: *> \endverbatim
  167: *>
  168: *> \param[out] ALPHA
  169: *> \verbatim
  170: *>          ALPHA is COMPLEX*16 array, dimension (N)
  171: *>          The complex scalars alpha that define the eigenvalues of
  172: *>          GNEP.  ALPHA(i) = S(i,i) in the generalized Schur
  173: *>          factorization.
  174: *> \endverbatim
  175: *>
  176: *> \param[out] BETA
  177: *> \verbatim
  178: *>          BETA is COMPLEX*16 array, dimension (N)
  179: *>          The real non-negative scalars beta that define the
  180: *>          eigenvalues of GNEP.  BETA(i) = P(i,i) in the generalized
  181: *>          Schur factorization.
  182: *>
  183: *>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
  184: *>          represent the j-th eigenvalue of the matrix pair (A,B), in
  185: *>          one of the forms lambda = alpha/beta or mu = beta/alpha.
  186: *>          Since either lambda or mu may overflow, they should not,
  187: *>          in general, be computed.
  188: *> \endverbatim
  189: *>
  190: *> \param[in,out] Q
  191: *> \verbatim
  192: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
  193: *>          On entry, if COMPQ = 'V', the unitary matrix Q1 used in the
  194: *>          reduction of (A,B) to generalized Hessenberg form.
  195: *>          On exit, if COMPQ = 'I', the unitary matrix of left Schur
  196: *>          vectors of (H,T), and if COMPQ = 'V', the unitary matrix of
  197: *>          left Schur vectors of (A,B).
  198: *>          Not referenced if COMPQ = 'N'.
  199: *> \endverbatim
  200: *>
  201: *> \param[in] LDQ
  202: *> \verbatim
  203: *>          LDQ is INTEGER
  204: *>          The leading dimension of the array Q.  LDQ >= 1.
  205: *>          If COMPQ='V' or 'I', then LDQ >= N.
  206: *> \endverbatim
  207: *>
  208: *> \param[in,out] Z
  209: *> \verbatim
  210: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
  211: *>          On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
  212: *>          reduction of (A,B) to generalized Hessenberg form.
  213: *>          On exit, if COMPZ = 'I', the unitary matrix of right Schur
  214: *>          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
  215: *>          right Schur vectors of (A,B).
  216: *>          Not referenced if COMPZ = 'N'.
  217: *> \endverbatim
  218: *>
  219: *> \param[in] LDZ
  220: *> \verbatim
  221: *>          LDZ is INTEGER
  222: *>          The leading dimension of the array Z.  LDZ >= 1.
  223: *>          If COMPZ='V' or 'I', then LDZ >= N.
  224: *> \endverbatim
  225: *>
  226: *> \param[out] WORK
  227: *> \verbatim
  228: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  229: *>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LWORK
  233: *> \verbatim
  234: *>          LWORK is INTEGER
  235: *>          The dimension of the array WORK.  LWORK >= max(1,N).
  236: *>
  237: *>          If LWORK = -1, then a workspace query is assumed; the routine
  238: *>          only calculates the optimal size of the WORK array, returns
  239: *>          this value as the first entry of the WORK array, and no error
  240: *>          message related to LWORK is issued by XERBLA.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] RWORK
  244: *> \verbatim
  245: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  246: *> \endverbatim
  247: *>
  248: *> \param[out] INFO
  249: *> \verbatim
  250: *>          INFO is INTEGER
  251: *>          = 0: successful exit
  252: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  253: *>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
  254: *>                     in Schur form, but ALPHA(i) and BETA(i),
  255: *>                     i=INFO+1,...,N should be correct.
  256: *>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
  257: *>                     in Schur form, but ALPHA(i) and BETA(i),
  258: *>                     i=INFO-N+1,...,N should be correct.
  259: *> \endverbatim
  260: *
  261: *  Authors:
  262: *  ========
  263: *
  264: *> \author Univ. of Tennessee
  265: *> \author Univ. of California Berkeley
  266: *> \author Univ. of Colorado Denver
  267: *> \author NAG Ltd.
  268: *
  269: *> \date April 2012
  270: *
  271: *> \ingroup complex16GEcomputational
  272: *
  273: *> \par Further Details:
  274: *  =====================
  275: *>
  276: *> \verbatim
  277: *>
  278: *>  We assume that complex ABS works as long as its value is less than
  279: *>  overflow.
  280: *> \endverbatim
  281: *>
  282: *  =====================================================================
  283:       SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
  284:      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
  285:      $                   RWORK, INFO )
  286: *
  287: *  -- LAPACK computational routine (version 3.7.0) --
  288: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  289: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  290: *     April 2012
  291: *
  292: *     .. Scalar Arguments ..
  293:       CHARACTER          COMPQ, COMPZ, JOB
  294:       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
  295: *     ..
  296: *     .. Array Arguments ..
  297:       DOUBLE PRECISION   RWORK( * )
  298:       COMPLEX*16         ALPHA( * ), BETA( * ), H( LDH, * ),
  299:      $                   Q( LDQ, * ), T( LDT, * ), WORK( * ),
  300:      $                   Z( LDZ, * )
  301: *     ..
  302: *
  303: *  =====================================================================
  304: *
  305: *     .. Parameters ..
  306:       COMPLEX*16         CZERO, CONE
  307:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  308:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  309:       DOUBLE PRECISION   ZERO, ONE
  310:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  311:       DOUBLE PRECISION   HALF
  312:       PARAMETER          ( HALF = 0.5D+0 )
  313: *     ..
  314: *     .. Local Scalars ..
  315:       LOGICAL            ILAZR2, ILAZRO, ILQ, ILSCHR, ILZ, LQUERY
  316:       INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
  317:      $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
  318:      $                   JR, MAXIT
  319:       DOUBLE PRECISION   ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL,
  320:      $                   C, SAFMIN, TEMP, TEMP2, TEMPR, ULP
  321:       COMPLEX*16         ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2,
  322:      $                   CTEMP3, ESHIFT, RTDISC, S, SHIFT, SIGNBC, T1,
  323:      $                   U12, X
  324: *     ..
  325: *     .. External Functions ..
  326:       LOGICAL            LSAME
  327:       DOUBLE PRECISION   DLAMCH, ZLANHS
  328:       EXTERNAL           LSAME, DLAMCH, ZLANHS
  329: *     ..
  330: *     .. External Subroutines ..
  331:       EXTERNAL           XERBLA, ZLARTG, ZLASET, ZROT, ZSCAL
  332: *     ..
  333: *     .. Intrinsic Functions ..
  334:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN,
  335:      $                   SQRT
  336: *     ..
  337: *     .. Statement Functions ..
  338:       DOUBLE PRECISION   ABS1
  339: *     ..
  340: *     .. Statement Function definitions ..
  341:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  342: *     ..
  343: *     .. Executable Statements ..
  344: *
  345: *     Decode JOB, COMPQ, COMPZ
  346: *
  347:       IF( LSAME( JOB, 'E' ) ) THEN
  348:          ILSCHR = .FALSE.
  349:          ISCHUR = 1
  350:       ELSE IF( LSAME( JOB, 'S' ) ) THEN
  351:          ILSCHR = .TRUE.
  352:          ISCHUR = 2
  353:       ELSE
  354:          ISCHUR = 0
  355:       END IF
  356: *
  357:       IF( LSAME( COMPQ, 'N' ) ) THEN
  358:          ILQ = .FALSE.
  359:          ICOMPQ = 1
  360:       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
  361:          ILQ = .TRUE.
  362:          ICOMPQ = 2
  363:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
  364:          ILQ = .TRUE.
  365:          ICOMPQ = 3
  366:       ELSE
  367:          ICOMPQ = 0
  368:       END IF
  369: *
  370:       IF( LSAME( COMPZ, 'N' ) ) THEN
  371:          ILZ = .FALSE.
  372:          ICOMPZ = 1
  373:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  374:          ILZ = .TRUE.
  375:          ICOMPZ = 2
  376:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  377:          ILZ = .TRUE.
  378:          ICOMPZ = 3
  379:       ELSE
  380:          ICOMPZ = 0
  381:       END IF
  382: *
  383: *     Check Argument Values
  384: *
  385:       INFO = 0
  386:       WORK( 1 ) = MAX( 1, N )
  387:       LQUERY = ( LWORK.EQ.-1 )
  388:       IF( ISCHUR.EQ.0 ) THEN
  389:          INFO = -1
  390:       ELSE IF( ICOMPQ.EQ.0 ) THEN
  391:          INFO = -2
  392:       ELSE IF( ICOMPZ.EQ.0 ) THEN
  393:          INFO = -3
  394:       ELSE IF( N.LT.0 ) THEN
  395:          INFO = -4
  396:       ELSE IF( ILO.LT.1 ) THEN
  397:          INFO = -5
  398:       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
  399:          INFO = -6
  400:       ELSE IF( LDH.LT.N ) THEN
  401:          INFO = -8
  402:       ELSE IF( LDT.LT.N ) THEN
  403:          INFO = -10
  404:       ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
  405:          INFO = -14
  406:       ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
  407:          INFO = -16
  408:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  409:          INFO = -18
  410:       END IF
  411:       IF( INFO.NE.0 ) THEN
  412:          CALL XERBLA( 'ZHGEQZ', -INFO )
  413:          RETURN
  414:       ELSE IF( LQUERY ) THEN
  415:          RETURN
  416:       END IF
  417: *
  418: *     Quick return if possible
  419: *
  420: *     WORK( 1 ) = CMPLX( 1 )
  421:       IF( N.LE.0 ) THEN
  422:          WORK( 1 ) = DCMPLX( 1 )
  423:          RETURN
  424:       END IF
  425: *
  426: *     Initialize Q and Z
  427: *
  428:       IF( ICOMPQ.EQ.3 )
  429:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  430:       IF( ICOMPZ.EQ.3 )
  431:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
  432: *
  433: *     Machine Constants
  434: *
  435:       IN = IHI + 1 - ILO
  436:       SAFMIN = DLAMCH( 'S' )
  437:       ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
  438:       ANORM = ZLANHS( 'F', IN, H( ILO, ILO ), LDH, RWORK )
  439:       BNORM = ZLANHS( 'F', IN, T( ILO, ILO ), LDT, RWORK )
  440:       ATOL = MAX( SAFMIN, ULP*ANORM )
  441:       BTOL = MAX( SAFMIN, ULP*BNORM )
  442:       ASCALE = ONE / MAX( SAFMIN, ANORM )
  443:       BSCALE = ONE / MAX( SAFMIN, BNORM )
  444: *
  445: *
  446: *     Set Eigenvalues IHI+1:N
  447: *
  448:       DO 10 J = IHI + 1, N
  449:          ABSB = ABS( T( J, J ) )
  450:          IF( ABSB.GT.SAFMIN ) THEN
  451:             SIGNBC = DCONJG( T( J, J ) / ABSB )
  452:             T( J, J ) = ABSB
  453:             IF( ILSCHR ) THEN
  454:                CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
  455:                CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
  456:             ELSE
  457:                CALL ZSCAL( 1, SIGNBC, H( J, J ), 1 )
  458:             END IF
  459:             IF( ILZ )
  460:      $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
  461:          ELSE
  462:             T( J, J ) = CZERO
  463:          END IF
  464:          ALPHA( J ) = H( J, J )
  465:          BETA( J ) = T( J, J )
  466:    10 CONTINUE
  467: *
  468: *     If IHI < ILO, skip QZ steps
  469: *
  470:       IF( IHI.LT.ILO )
  471:      $   GO TO 190
  472: *
  473: *     MAIN QZ ITERATION LOOP
  474: *
  475: *     Initialize dynamic indices
  476: *
  477: *     Eigenvalues ILAST+1:N have been found.
  478: *        Column operations modify rows IFRSTM:whatever
  479: *        Row operations modify columns whatever:ILASTM
  480: *
  481: *     If only eigenvalues are being computed, then
  482: *        IFRSTM is the row of the last splitting row above row ILAST;
  483: *        this is always at least ILO.
  484: *     IITER counts iterations since the last eigenvalue was found,
  485: *        to tell when to use an extraordinary shift.
  486: *     MAXIT is the maximum number of QZ sweeps allowed.
  487: *
  488:       ILAST = IHI
  489:       IF( ILSCHR ) THEN
  490:          IFRSTM = 1
  491:          ILASTM = N
  492:       ELSE
  493:          IFRSTM = ILO
  494:          ILASTM = IHI
  495:       END IF
  496:       IITER = 0
  497:       ESHIFT = CZERO
  498:       MAXIT = 30*( IHI-ILO+1 )
  499: *
  500:       DO 170 JITER = 1, MAXIT
  501: *
  502: *        Check for too many iterations.
  503: *
  504:          IF( JITER.GT.MAXIT )
  505:      $      GO TO 180
  506: *
  507: *        Split the matrix if possible.
  508: *
  509: *        Two tests:
  510: *           1: H(j,j-1)=0  or  j=ILO
  511: *           2: T(j,j)=0
  512: *
  513: *        Special case: j=ILAST
  514: *
  515:          IF( ILAST.EQ.ILO ) THEN
  516:             GO TO 60
  517:          ELSE
  518:             IF( ABS1( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
  519:                H( ILAST, ILAST-1 ) = CZERO
  520:                GO TO 60
  521:             END IF
  522:          END IF
  523: *
  524:          IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
  525:             T( ILAST, ILAST ) = CZERO
  526:             GO TO 50
  527:          END IF
  528: *
  529: *        General case: j<ILAST
  530: *
  531:          DO 40 J = ILAST - 1, ILO, -1
  532: *
  533: *           Test 1: for H(j,j-1)=0 or j=ILO
  534: *
  535:             IF( J.EQ.ILO ) THEN
  536:                ILAZRO = .TRUE.
  537:             ELSE
  538:                IF( ABS1( H( J, J-1 ) ).LE.ATOL ) THEN
  539:                   H( J, J-1 ) = CZERO
  540:                   ILAZRO = .TRUE.
  541:                ELSE
  542:                   ILAZRO = .FALSE.
  543:                END IF
  544:             END IF
  545: *
  546: *           Test 2: for T(j,j)=0
  547: *
  548:             IF( ABS( T( J, J ) ).LT.BTOL ) THEN
  549:                T( J, J ) = CZERO
  550: *
  551: *              Test 1a: Check for 2 consecutive small subdiagonals in A
  552: *
  553:                ILAZR2 = .FALSE.
  554:                IF( .NOT.ILAZRO ) THEN
  555:                   IF( ABS1( H( J, J-1 ) )*( ASCALE*ABS1( H( J+1,
  556:      $                J ) ) ).LE.ABS1( H( J, J ) )*( ASCALE*ATOL ) )
  557:      $                ILAZR2 = .TRUE.
  558:                END IF
  559: *
  560: *              If both tests pass (1 & 2), i.e., the leading diagonal
  561: *              element of B in the block is zero, split a 1x1 block off
  562: *              at the top. (I.e., at the J-th row/column) The leading
  563: *              diagonal element of the remainder can also be zero, so
  564: *              this may have to be done repeatedly.
  565: *
  566:                IF( ILAZRO .OR. ILAZR2 ) THEN
  567:                   DO 20 JCH = J, ILAST - 1
  568:                      CTEMP = H( JCH, JCH )
  569:                      CALL ZLARTG( CTEMP, H( JCH+1, JCH ), C, S,
  570:      $                            H( JCH, JCH ) )
  571:                      H( JCH+1, JCH ) = CZERO
  572:                      CALL ZROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
  573:      $                          H( JCH+1, JCH+1 ), LDH, C, S )
  574:                      CALL ZROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
  575:      $                          T( JCH+1, JCH+1 ), LDT, C, S )
  576:                      IF( ILQ )
  577:      $                  CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
  578:      $                             C, DCONJG( S ) )
  579:                      IF( ILAZR2 )
  580:      $                  H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
  581:                      ILAZR2 = .FALSE.
  582:                      IF( ABS1( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
  583:                         IF( JCH+1.GE.ILAST ) THEN
  584:                            GO TO 60
  585:                         ELSE
  586:                            IFIRST = JCH + 1
  587:                            GO TO 70
  588:                         END IF
  589:                      END IF
  590:                      T( JCH+1, JCH+1 ) = CZERO
  591:    20             CONTINUE
  592:                   GO TO 50
  593:                ELSE
  594: *
  595: *                 Only test 2 passed -- chase the zero to T(ILAST,ILAST)
  596: *                 Then process as in the case T(ILAST,ILAST)=0
  597: *
  598:                   DO 30 JCH = J, ILAST - 1
  599:                      CTEMP = T( JCH, JCH+1 )
  600:                      CALL ZLARTG( CTEMP, T( JCH+1, JCH+1 ), C, S,
  601:      $                            T( JCH, JCH+1 ) )
  602:                      T( JCH+1, JCH+1 ) = CZERO
  603:                      IF( JCH.LT.ILASTM-1 )
  604:      $                  CALL ZROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
  605:      $                             T( JCH+1, JCH+2 ), LDT, C, S )
  606:                      CALL ZROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
  607:      $                          H( JCH+1, JCH-1 ), LDH, C, S )
  608:                      IF( ILQ )
  609:      $                  CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
  610:      $                             C, DCONJG( S ) )
  611:                      CTEMP = H( JCH+1, JCH )
  612:                      CALL ZLARTG( CTEMP, H( JCH+1, JCH-1 ), C, S,
  613:      $                            H( JCH+1, JCH ) )
  614:                      H( JCH+1, JCH-1 ) = CZERO
  615:                      CALL ZROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
  616:      $                          H( IFRSTM, JCH-1 ), 1, C, S )
  617:                      CALL ZROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
  618:      $                          T( IFRSTM, JCH-1 ), 1, C, S )
  619:                      IF( ILZ )
  620:      $                  CALL ZROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
  621:      $                             C, S )
  622:    30             CONTINUE
  623:                   GO TO 50
  624:                END IF
  625:             ELSE IF( ILAZRO ) THEN
  626: *
  627: *              Only test 1 passed -- work on J:ILAST
  628: *
  629:                IFIRST = J
  630:                GO TO 70
  631:             END IF
  632: *
  633: *           Neither test passed -- try next J
  634: *
  635:    40    CONTINUE
  636: *
  637: *        (Drop-through is "impossible")
  638: *
  639:          INFO = 2*N + 1
  640:          GO TO 210
  641: *
  642: *        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
  643: *        1x1 block.
  644: *
  645:    50    CONTINUE
  646:          CTEMP = H( ILAST, ILAST )
  647:          CALL ZLARTG( CTEMP, H( ILAST, ILAST-1 ), C, S,
  648:      $                H( ILAST, ILAST ) )
  649:          H( ILAST, ILAST-1 ) = CZERO
  650:          CALL ZROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
  651:      $              H( IFRSTM, ILAST-1 ), 1, C, S )
  652:          CALL ZROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
  653:      $              T( IFRSTM, ILAST-1 ), 1, C, S )
  654:          IF( ILZ )
  655:      $      CALL ZROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
  656: *
  657: *        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA
  658: *
  659:    60    CONTINUE
  660:          ABSB = ABS( T( ILAST, ILAST ) )
  661:          IF( ABSB.GT.SAFMIN ) THEN
  662:             SIGNBC = DCONJG( T( ILAST, ILAST ) / ABSB )
  663:             T( ILAST, ILAST ) = ABSB
  664:             IF( ILSCHR ) THEN
  665:                CALL ZSCAL( ILAST-IFRSTM, SIGNBC, T( IFRSTM, ILAST ), 1 )
  666:                CALL ZSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ),
  667:      $                     1 )
  668:             ELSE
  669:                CALL ZSCAL( 1, SIGNBC, H( ILAST, ILAST ), 1 )
  670:             END IF
  671:             IF( ILZ )
  672:      $         CALL ZSCAL( N, SIGNBC, Z( 1, ILAST ), 1 )
  673:          ELSE
  674:             T( ILAST, ILAST ) = CZERO
  675:          END IF
  676:          ALPHA( ILAST ) = H( ILAST, ILAST )
  677:          BETA( ILAST ) = T( ILAST, ILAST )
  678: *
  679: *        Go to next block -- exit if finished.
  680: *
  681:          ILAST = ILAST - 1
  682:          IF( ILAST.LT.ILO )
  683:      $      GO TO 190
  684: *
  685: *        Reset counters
  686: *
  687:          IITER = 0
  688:          ESHIFT = CZERO
  689:          IF( .NOT.ILSCHR ) THEN
  690:             ILASTM = ILAST
  691:             IF( IFRSTM.GT.ILAST )
  692:      $         IFRSTM = ILO
  693:          END IF
  694:          GO TO 160
  695: *
  696: *        QZ step
  697: *
  698: *        This iteration only involves rows/columns IFIRST:ILAST.  We
  699: *        assume IFIRST < ILAST, and that the diagonal of B is non-zero.
  700: *
  701:    70    CONTINUE
  702:          IITER = IITER + 1
  703:          IF( .NOT.ILSCHR ) THEN
  704:             IFRSTM = IFIRST
  705:          END IF
  706: *
  707: *        Compute the Shift.
  708: *
  709: *        At this point, IFIRST < ILAST, and the diagonal elements of
  710: *        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
  711: *        magnitude)
  712: *
  713:          IF( ( IITER / 10 )*10.NE.IITER ) THEN
  714: *
  715: *           The Wilkinson shift (AEP p.512), i.e., the eigenvalue of
  716: *           the bottom-right 2x2 block of A inv(B) which is nearest to
  717: *           the bottom-right element.
  718: *
  719: *           We factor B as U*D, where U has unit diagonals, and
  720: *           compute (A*inv(D))*inv(U).
  721: *
  722:             U12 = ( BSCALE*T( ILAST-1, ILAST ) ) /
  723:      $            ( BSCALE*T( ILAST, ILAST ) )
  724:             AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
  725:      $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
  726:             AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
  727:      $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
  728:             AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
  729:      $             ( BSCALE*T( ILAST, ILAST ) )
  730:             AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
  731:      $             ( BSCALE*T( ILAST, ILAST ) )
  732:             ABI22 = AD22 - U12*AD21
  733: *
  734:             T1 = HALF*( AD11+ABI22 )
  735:             RTDISC = SQRT( T1**2+AD12*AD21-AD11*AD22 )
  736:             TEMP = DBLE( T1-ABI22 )*DBLE( RTDISC ) +
  737:      $             DIMAG( T1-ABI22 )*DIMAG( RTDISC )
  738:             IF( TEMP.LE.ZERO ) THEN
  739:                SHIFT = T1 + RTDISC
  740:             ELSE
  741:                SHIFT = T1 - RTDISC
  742:             END IF
  743:          ELSE
  744: *
  745: *           Exceptional shift.  Chosen for no particularly good reason.
  746: *
  747:             ESHIFT = ESHIFT + (ASCALE*H(ILAST,ILAST-1))/
  748:      $                        (BSCALE*T(ILAST-1,ILAST-1))
  749:             SHIFT = ESHIFT
  750:          END IF
  751: *
  752: *        Now check for two consecutive small subdiagonals.
  753: *
  754:          DO 80 J = ILAST - 1, IFIRST + 1, -1
  755:             ISTART = J
  756:             CTEMP = ASCALE*H( J, J ) - SHIFT*( BSCALE*T( J, J ) )
  757:             TEMP = ABS1( CTEMP )
  758:             TEMP2 = ASCALE*ABS1( H( J+1, J ) )
  759:             TEMPR = MAX( TEMP, TEMP2 )
  760:             IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
  761:                TEMP = TEMP / TEMPR
  762:                TEMP2 = TEMP2 / TEMPR
  763:             END IF
  764:             IF( ABS1( H( J, J-1 ) )*TEMP2.LE.TEMP*ATOL )
  765:      $         GO TO 90
  766:    80    CONTINUE
  767: *
  768:          ISTART = IFIRST
  769:          CTEMP = ASCALE*H( IFIRST, IFIRST ) -
  770:      $           SHIFT*( BSCALE*T( IFIRST, IFIRST ) )
  771:    90    CONTINUE
  772: *
  773: *        Do an implicit-shift QZ sweep.
  774: *
  775: *        Initial Q
  776: *
  777:          CTEMP2 = ASCALE*H( ISTART+1, ISTART )
  778:          CALL ZLARTG( CTEMP, CTEMP2, C, S, CTEMP3 )
  779: *
  780: *        Sweep
  781: *
  782:          DO 150 J = ISTART, ILAST - 1
  783:             IF( J.GT.ISTART ) THEN
  784:                CTEMP = H( J, J-1 )
  785:                CALL ZLARTG( CTEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
  786:                H( J+1, J-1 ) = CZERO
  787:             END IF
  788: *
  789:             DO 100 JC = J, ILASTM
  790:                CTEMP = C*H( J, JC ) + S*H( J+1, JC )
  791:                H( J+1, JC ) = -DCONJG( S )*H( J, JC ) + C*H( J+1, JC )
  792:                H( J, JC ) = CTEMP
  793:                CTEMP2 = C*T( J, JC ) + S*T( J+1, JC )
  794:                T( J+1, JC ) = -DCONJG( S )*T( J, JC ) + C*T( J+1, JC )
  795:                T( J, JC ) = CTEMP2
  796:   100       CONTINUE
  797:             IF( ILQ ) THEN
  798:                DO 110 JR = 1, N
  799:                   CTEMP = C*Q( JR, J ) + DCONJG( S )*Q( JR, J+1 )
  800:                   Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
  801:                   Q( JR, J ) = CTEMP
  802:   110          CONTINUE
  803:             END IF
  804: *
  805:             CTEMP = T( J+1, J+1 )
  806:             CALL ZLARTG( CTEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
  807:             T( J+1, J ) = CZERO
  808: *
  809:             DO 120 JR = IFRSTM, MIN( J+2, ILAST )
  810:                CTEMP = C*H( JR, J+1 ) + S*H( JR, J )
  811:                H( JR, J ) = -DCONJG( S )*H( JR, J+1 ) + C*H( JR, J )
  812:                H( JR, J+1 ) = CTEMP
  813:   120       CONTINUE
  814:             DO 130 JR = IFRSTM, J
  815:                CTEMP = C*T( JR, J+1 ) + S*T( JR, J )
  816:                T( JR, J ) = -DCONJG( S )*T( JR, J+1 ) + C*T( JR, J )
  817:                T( JR, J+1 ) = CTEMP
  818:   130       CONTINUE
  819:             IF( ILZ ) THEN
  820:                DO 140 JR = 1, N
  821:                   CTEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
  822:                   Z( JR, J ) = -DCONJG( S )*Z( JR, J+1 ) + C*Z( JR, J )
  823:                   Z( JR, J+1 ) = CTEMP
  824:   140          CONTINUE
  825:             END IF
  826:   150    CONTINUE
  827: *
  828:   160    CONTINUE
  829: *
  830:   170 CONTINUE
  831: *
  832: *     Drop-through = non-convergence
  833: *
  834:   180 CONTINUE
  835:       INFO = ILAST
  836:       GO TO 210
  837: *
  838: *     Successful completion of all QZ steps
  839: *
  840:   190 CONTINUE
  841: *
  842: *     Set Eigenvalues 1:ILO-1
  843: *
  844:       DO 200 J = 1, ILO - 1
  845:          ABSB = ABS( T( J, J ) )
  846:          IF( ABSB.GT.SAFMIN ) THEN
  847:             SIGNBC = DCONJG( T( J, J ) / ABSB )
  848:             T( J, J ) = ABSB
  849:             IF( ILSCHR ) THEN
  850:                CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
  851:                CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
  852:             ELSE
  853:                CALL ZSCAL( 1, SIGNBC, H( J, J ), 1 )
  854:             END IF
  855:             IF( ILZ )
  856:      $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
  857:          ELSE
  858:             T( J, J ) = CZERO
  859:          END IF
  860:          ALPHA( J ) = H( J, J )
  861:          BETA( J ) = T( J, J )
  862:   200 CONTINUE
  863: *
  864: *     Normal Termination
  865: *
  866:       INFO = 0
  867: *
  868: *     Exit (other than argument error) -- return optimal workspace size
  869: *
  870:   210 CONTINUE
  871:       WORK( 1 ) = DCMPLX( N )
  872:       RETURN
  873: *
  874: *     End of ZHGEQZ
  875: *
  876:       END

CVSweb interface <joel.bertrand@systella.fr>