Diff for /rpl/lapack/lapack/zhgeqz.f between versions 1.7 and 1.8

version 1.7, 2010/12/21 13:53:47 version 1.8, 2011/11/21 20:43:12
Line 1 Line 1
   *> \brief \b ZHGEQZ
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download ZHGEQZ + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhgeqz.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhgeqz.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhgeqz.f"> 
   *> [TXT]</a>
   *> \endhtmlonly 
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
   *                          ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
   *                          RWORK, INFO )
   * 
   *       .. Scalar Arguments ..
   *       CHARACTER          COMPQ, COMPZ, JOB
   *       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
   *       ..
   *       .. Array Arguments ..
   *       DOUBLE PRECISION   RWORK( * )
   *       COMPLEX*16         ALPHA( * ), BETA( * ), H( LDH, * ),
   *      $                   Q( LDQ, * ), T( LDT, * ), WORK( * ),
   *      $                   Z( LDZ, * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
   *> where H is an upper Hessenberg matrix and T is upper triangular,
   *> using the single-shift QZ method.
   *> Matrix pairs of this type are produced by the reduction to
   *> generalized upper Hessenberg form of a complex matrix pair (A,B):
   *> 
   *>    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,
   *> 
   *> as computed by ZGGHRD.
   *> 
   *> If JOB='S', then the Hessenberg-triangular pair (H,T) is
   *> also reduced to generalized Schur form,
   *> 
   *>    H = Q*S*Z**H,  T = Q*P*Z**H,
   *> 
   *> where Q and Z are unitary matrices and S and P are upper triangular.
   *> 
   *> Optionally, the unitary matrix Q from the generalized Schur
   *> factorization may be postmultiplied into an input matrix Q1, and the
   *> unitary matrix Z may be postmultiplied into an input matrix Z1.
   *> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
   *> the matrix pair (A,B) to generalized Hessenberg form, then the output
   *> matrices Q1*Q and Z1*Z are the unitary factors from the generalized
   *> Schur factorization of (A,B):
   *> 
   *>    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.
   *> 
   *> To avoid overflow, eigenvalues of the matrix pair (H,T)
   *> (equivalently, of (A,B)) are computed as a pair of complex values
   *> (alpha,beta).  If beta is nonzero, lambda = alpha / beta is an
   *> eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
   *>    A*x = lambda*B*x
   *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
   *> alternate form of the GNEP
   *>    mu*A*y = B*y.
   *> The values of alpha and beta for the i-th eigenvalue can be read
   *> directly from the generalized Schur form:  alpha = S(i,i),
   *> beta = P(i,i).
   *>
   *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
   *>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
   *>      pp. 241--256.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] JOB
   *> \verbatim
   *>          JOB is CHARACTER*1
   *>          = 'E': Compute eigenvalues only;
   *>          = 'S': Computer eigenvalues and the Schur form.
   *> \endverbatim
   *>
   *> \param[in] COMPQ
   *> \verbatim
   *>          COMPQ is CHARACTER*1
   *>          = 'N': Left Schur vectors (Q) are not computed;
   *>          = 'I': Q is initialized to the unit matrix and the matrix Q
   *>                 of left Schur vectors of (H,T) is returned;
   *>          = 'V': Q must contain a unitary matrix Q1 on entry and
   *>                 the product Q1*Q is returned.
   *> \endverbatim
   *>
   *> \param[in] COMPZ
   *> \verbatim
   *>          COMPZ is CHARACTER*1
   *>          = 'N': Right Schur vectors (Z) are not computed;
   *>          = 'I': Q is initialized to the unit matrix and the matrix Z
   *>                 of right Schur vectors of (H,T) is returned;
   *>          = 'V': Z must contain a unitary matrix Z1 on entry and
   *>                 the product Z1*Z is returned.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The order of the matrices H, T, Q, and Z.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in] ILO
   *> \verbatim
   *>          ILO is INTEGER
   *> \endverbatim
   *>
   *> \param[in] IHI
   *> \verbatim
   *>          IHI is INTEGER
   *>          ILO and IHI mark the rows and columns of H which are in
   *>          Hessenberg form.  It is assumed that A is already upper
   *>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
   *>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
   *> \endverbatim
   *>
   *> \param[in,out] H
   *> \verbatim
   *>          H is COMPLEX*16 array, dimension (LDH, N)
   *>          On entry, the N-by-N upper Hessenberg matrix H.
   *>          On exit, if JOB = 'S', H contains the upper triangular
   *>          matrix S from the generalized Schur factorization.
   *>          If JOB = 'E', the diagonal of H matches that of S, but
   *>          the rest of H is unspecified.
   *> \endverbatim
   *>
   *> \param[in] LDH
   *> \verbatim
   *>          LDH is INTEGER
   *>          The leading dimension of the array H.  LDH >= max( 1, N ).
   *> \endverbatim
   *>
   *> \param[in,out] T
   *> \verbatim
   *>          T is COMPLEX*16 array, dimension (LDT, N)
   *>          On entry, the N-by-N upper triangular matrix T.
   *>          On exit, if JOB = 'S', T contains the upper triangular
   *>          matrix P from the generalized Schur factorization.
   *>          If JOB = 'E', the diagonal of T matches that of P, but
   *>          the rest of T is unspecified.
   *> \endverbatim
   *>
   *> \param[in] LDT
   *> \verbatim
   *>          LDT is INTEGER
   *>          The leading dimension of the array T.  LDT >= max( 1, N ).
   *> \endverbatim
   *>
   *> \param[out] ALPHA
   *> \verbatim
   *>          ALPHA is COMPLEX*16 array, dimension (N)
   *>          The complex scalars alpha that define the eigenvalues of
   *>          GNEP.  ALPHA(i) = S(i,i) in the generalized Schur
   *>          factorization.
   *> \endverbatim
   *>
   *> \param[out] BETA
   *> \verbatim
   *>          BETA is COMPLEX*16 array, dimension (N)
   *>          The real non-negative scalars beta that define the
   *>          eigenvalues of GNEP.  BETA(i) = P(i,i) in the generalized
   *>          Schur factorization.
   *>
   *>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
   *>          represent the j-th eigenvalue of the matrix pair (A,B), in
   *>          one of the forms lambda = alpha/beta or mu = beta/alpha.
   *>          Since either lambda or mu may overflow, they should not,
   *>          in general, be computed.
   *> \endverbatim
   *>
   *> \param[in,out] Q
   *> \verbatim
   *>          Q is COMPLEX*16 array, dimension (LDQ, N)
   *>          On entry, if COMPZ = 'V', the unitary matrix Q1 used in the
   *>          reduction of (A,B) to generalized Hessenberg form.
   *>          On exit, if COMPZ = 'I', the unitary matrix of left Schur
   *>          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
   *>          left Schur vectors of (A,B).
   *>          Not referenced if COMPZ = 'N'.
   *> \endverbatim
   *>
   *> \param[in] LDQ
   *> \verbatim
   *>          LDQ is INTEGER
   *>          The leading dimension of the array Q.  LDQ >= 1.
   *>          If COMPQ='V' or 'I', then LDQ >= N.
   *> \endverbatim
   *>
   *> \param[in,out] Z
   *> \verbatim
   *>          Z is COMPLEX*16 array, dimension (LDZ, N)
   *>          On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
   *>          reduction of (A,B) to generalized Hessenberg form.
   *>          On exit, if COMPZ = 'I', the unitary matrix of right Schur
   *>          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
   *>          right Schur vectors of (A,B).
   *>          Not referenced if COMPZ = 'N'.
   *> \endverbatim
   *>
   *> \param[in] LDZ
   *> \verbatim
   *>          LDZ is INTEGER
   *>          The leading dimension of the array Z.  LDZ >= 1.
   *>          If COMPZ='V' or 'I', then LDZ >= N.
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   *>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK.  LWORK >= max(1,N).
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal size of the WORK array, returns
   *>          this value as the first entry of the WORK array, and no error
   *>          message related to LWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] RWORK
   *> \verbatim
   *>          RWORK is DOUBLE PRECISION array, dimension (N)
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0: successful exit
   *>          < 0: if INFO = -i, the i-th argument had an illegal value
   *>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
   *>                     in Schur form, but ALPHA(i) and BETA(i),
   *>                     i=INFO+1,...,N should be correct.
   *>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
   *>                     in Schur form, but ALPHA(i) and BETA(i),
   *>                     i=INFO-N+1,...,N should be correct.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup complex16GEcomputational
   *
   *> \par Further Details:
   *  =====================
   *>
   *> \verbatim
   *>
   *>  We assume that complex ABS works as long as its value is less than
   *>  overflow.
   *> \endverbatim
   *>
   *  =====================================================================
       SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,        SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,       $                   ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
      $                   RWORK, INFO )       $                   RWORK, INFO )
 *  *
 *  -- LAPACK routine (version 3.2) --  *  -- LAPACK computational routine (version 3.4.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  *     November 2011
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          COMPQ, COMPZ, JOB        CHARACTER          COMPQ, COMPZ, JOB
Line 18 Line 300
      $                   Z( LDZ, * )       $                   Z( LDZ, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),  
 *  where H is an upper Hessenberg matrix and T is upper triangular,  
 *  using the single-shift QZ method.  
 *  Matrix pairs of this type are produced by the reduction to  
 *  generalized upper Hessenberg form of a complex matrix pair (A,B):  
 *    
 *     A = Q1*H*Z1**H,  B = Q1*T*Z1**H,  
 *    
 *  as computed by ZGGHRD.  
 *    
 *  If JOB='S', then the Hessenberg-triangular pair (H,T) is  
 *  also reduced to generalized Schur form,  
 *    
 *     H = Q*S*Z**H,  T = Q*P*Z**H,  
 *    
 *  where Q and Z are unitary matrices and S and P are upper triangular.  
 *    
 *  Optionally, the unitary matrix Q from the generalized Schur  
 *  factorization may be postmultiplied into an input matrix Q1, and the  
 *  unitary matrix Z may be postmultiplied into an input matrix Z1.  
 *  If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced  
 *  the matrix pair (A,B) to generalized Hessenberg form, then the output  
 *  matrices Q1*Q and Z1*Z are the unitary factors from the generalized  
 *  Schur factorization of (A,B):  
 *    
 *     A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.  
 *    
 *  To avoid overflow, eigenvalues of the matrix pair (H,T)  
 *  (equivalently, of (A,B)) are computed as a pair of complex values  
 *  (alpha,beta).  If beta is nonzero, lambda = alpha / beta is an  
 *  eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)  
 *     A*x = lambda*B*x  
 *  and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the  
 *  alternate form of the GNEP  
 *     mu*A*y = B*y.  
 *  The values of alpha and beta for the i-th eigenvalue can be read  
 *  directly from the generalized Schur form:  alpha = S(i,i),  
 *  beta = P(i,i).  
 *  
 *  Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix  
 *       Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),  
 *       pp. 241--256.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  JOB     (input) CHARACTER*1  
 *          = 'E': Compute eigenvalues only;  
 *          = 'S': Computer eigenvalues and the Schur form.  
 *  
 *  COMPQ   (input) CHARACTER*1  
 *          = 'N': Left Schur vectors (Q) are not computed;  
 *          = 'I': Q is initialized to the unit matrix and the matrix Q  
 *                 of left Schur vectors of (H,T) is returned;  
 *          = 'V': Q must contain a unitary matrix Q1 on entry and  
 *                 the product Q1*Q is returned.  
 *  
 *  COMPZ   (input) CHARACTER*1  
 *          = 'N': Right Schur vectors (Z) are not computed;  
 *          = 'I': Q is initialized to the unit matrix and the matrix Z  
 *                 of right Schur vectors of (H,T) is returned;  
 *          = 'V': Z must contain a unitary matrix Z1 on entry and  
 *                 the product Z1*Z is returned.  
 *  
 *  N       (input) INTEGER  
 *          The order of the matrices H, T, Q, and Z.  N >= 0.  
 *  
 *  ILO     (input) INTEGER  
 *  IHI     (input) INTEGER  
 *          ILO and IHI mark the rows and columns of H which are in  
 *          Hessenberg form.  It is assumed that A is already upper  
 *          triangular in rows and columns 1:ILO-1 and IHI+1:N.  
 *          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.  
 *  
 *  H       (input/output) COMPLEX*16 array, dimension (LDH, N)  
 *          On entry, the N-by-N upper Hessenberg matrix H.  
 *          On exit, if JOB = 'S', H contains the upper triangular  
 *          matrix S from the generalized Schur factorization.  
 *          If JOB = 'E', the diagonal of H matches that of S, but  
 *          the rest of H is unspecified.  
 *  
 *  LDH     (input) INTEGER  
 *          The leading dimension of the array H.  LDH >= max( 1, N ).  
 *  
 *  T       (input/output) COMPLEX*16 array, dimension (LDT, N)  
 *          On entry, the N-by-N upper triangular matrix T.  
 *          On exit, if JOB = 'S', T contains the upper triangular  
 *          matrix P from the generalized Schur factorization.  
 *          If JOB = 'E', the diagonal of T matches that of P, but  
 *          the rest of T is unspecified.  
 *  
 *  LDT     (input) INTEGER  
 *          The leading dimension of the array T.  LDT >= max( 1, N ).  
 *  
 *  ALPHA   (output) COMPLEX*16 array, dimension (N)  
 *          The complex scalars alpha that define the eigenvalues of  
 *          GNEP.  ALPHA(i) = S(i,i) in the generalized Schur  
 *          factorization.  
 *  
 *  BETA    (output) COMPLEX*16 array, dimension (N)  
 *          The real non-negative scalars beta that define the  
 *          eigenvalues of GNEP.  BETA(i) = P(i,i) in the generalized  
 *          Schur factorization.  
 *  
 *          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)  
 *          represent the j-th eigenvalue of the matrix pair (A,B), in  
 *          one of the forms lambda = alpha/beta or mu = beta/alpha.  
 *          Since either lambda or mu may overflow, they should not,  
 *          in general, be computed.  
 *  
 *  Q       (input/output) COMPLEX*16 array, dimension (LDQ, N)  
 *          On entry, if COMPZ = 'V', the unitary matrix Q1 used in the  
 *          reduction of (A,B) to generalized Hessenberg form.  
 *          On exit, if COMPZ = 'I', the unitary matrix of left Schur  
 *          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of  
 *          left Schur vectors of (A,B).  
 *          Not referenced if COMPZ = 'N'.  
 *  
 *  LDQ     (input) INTEGER  
 *          The leading dimension of the array Q.  LDQ >= 1.  
 *          If COMPQ='V' or 'I', then LDQ >= N.  
 *  
 *  Z       (input/output) COMPLEX*16 array, dimension (LDZ, N)  
 *          On entry, if COMPZ = 'V', the unitary matrix Z1 used in the  
 *          reduction of (A,B) to generalized Hessenberg form.  
 *          On exit, if COMPZ = 'I', the unitary matrix of right Schur  
 *          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of  
 *          right Schur vectors of (A,B).  
 *          Not referenced if COMPZ = 'N'.  
 *  
 *  LDZ     (input) INTEGER  
 *          The leading dimension of the array Z.  LDZ >= 1.  
 *          If COMPZ='V' or 'I', then LDZ >= N.  
 *  
 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))  
 *          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK.  LWORK >= max(1,N).  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal size of the WORK array, returns  
 *          this value as the first entry of the WORK array, and no error  
 *          message related to LWORK is issued by XERBLA.  
 *  
 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)  
 *  
 *  INFO    (output) INTEGER  
 *          = 0: successful exit  
 *          < 0: if INFO = -i, the i-th argument had an illegal value  
 *          = 1,...,N: the QZ iteration did not converge.  (H,T) is not  
 *                     in Schur form, but ALPHA(i) and BETA(i),  
 *                     i=INFO+1,...,N should be correct.  
 *          = N+1,...,2*N: the shift calculation failed.  (H,T) is not  
 *                     in Schur form, but ALPHA(i) and BETA(i),  
 *                     i=INFO-N+1,...,N should be correct.  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  We assume that complex ABS works as long as its value is less than  
 *  overflow.  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..

Removed from v.1.7  
changed lines
  Added in v.1.8


CVSweb interface <joel.bertrand@systella.fr>