Diff for /rpl/lapack/lapack/zhgeqz.f between versions 1.6 and 1.20

version 1.6, 2010/08/13 21:04:06 version 1.20, 2023/08/07 08:39:25
Line 1 Line 1
   *> \brief \b ZHGEQZ
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at
   *            http://www.netlib.org/lapack/explore-html/
   *
   *> \htmlonly
   *> Download ZHGEQZ + dependencies
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhgeqz.f">
   *> [TGZ]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhgeqz.f">
   *> [ZIP]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhgeqz.f">
   *> [TXT]</a>
   *> \endhtmlonly
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
   *                          ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
   *                          RWORK, INFO )
   *
   *       .. Scalar Arguments ..
   *       CHARACTER          COMPQ, COMPZ, JOB
   *       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
   *       ..
   *       .. Array Arguments ..
   *       DOUBLE PRECISION   RWORK( * )
   *       COMPLEX*16         ALPHA( * ), BETA( * ), H( LDH, * ),
   *      $                   Q( LDQ, * ), T( LDT, * ), WORK( * ),
   *      $                   Z( LDZ, * )
   *       ..
   *
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
   *> where H is an upper Hessenberg matrix and T is upper triangular,
   *> using the single-shift QZ method.
   *> Matrix pairs of this type are produced by the reduction to
   *> generalized upper Hessenberg form of a complex matrix pair (A,B):
   *>
   *>    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,
   *>
   *> as computed by ZGGHRD.
   *>
   *> If JOB='S', then the Hessenberg-triangular pair (H,T) is
   *> also reduced to generalized Schur form,
   *>
   *>    H = Q*S*Z**H,  T = Q*P*Z**H,
   *>
   *> where Q and Z are unitary matrices and S and P are upper triangular.
   *>
   *> Optionally, the unitary matrix Q from the generalized Schur
   *> factorization may be postmultiplied into an input matrix Q1, and the
   *> unitary matrix Z may be postmultiplied into an input matrix Z1.
   *> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
   *> the matrix pair (A,B) to generalized Hessenberg form, then the output
   *> matrices Q1*Q and Z1*Z are the unitary factors from the generalized
   *> Schur factorization of (A,B):
   *>
   *>    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.
   *>
   *> To avoid overflow, eigenvalues of the matrix pair (H,T)
   *> (equivalently, of (A,B)) are computed as a pair of complex values
   *> (alpha,beta).  If beta is nonzero, lambda = alpha / beta is an
   *> eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
   *>    A*x = lambda*B*x
   *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
   *> alternate form of the GNEP
   *>    mu*A*y = B*y.
   *> The values of alpha and beta for the i-th eigenvalue can be read
   *> directly from the generalized Schur form:  alpha = S(i,i),
   *> beta = P(i,i).
   *>
   *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
   *>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
   *>      pp. 241--256.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] JOB
   *> \verbatim
   *>          JOB is CHARACTER*1
   *>          = 'E': Compute eigenvalues only;
   *>          = 'S': Computer eigenvalues and the Schur form.
   *> \endverbatim
   *>
   *> \param[in] COMPQ
   *> \verbatim
   *>          COMPQ is CHARACTER*1
   *>          = 'N': Left Schur vectors (Q) are not computed;
   *>          = 'I': Q is initialized to the unit matrix and the matrix Q
   *>                 of left Schur vectors of (H,T) is returned;
   *>          = 'V': Q must contain a unitary matrix Q1 on entry and
   *>                 the product Q1*Q is returned.
   *> \endverbatim
   *>
   *> \param[in] COMPZ
   *> \verbatim
   *>          COMPZ is CHARACTER*1
   *>          = 'N': Right Schur vectors (Z) are not computed;
   *>          = 'I': Q is initialized to the unit matrix and the matrix Z
   *>                 of right Schur vectors of (H,T) is returned;
   *>          = 'V': Z must contain a unitary matrix Z1 on entry and
   *>                 the product Z1*Z is returned.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The order of the matrices H, T, Q, and Z.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in] ILO
   *> \verbatim
   *>          ILO is INTEGER
   *> \endverbatim
   *>
   *> \param[in] IHI
   *> \verbatim
   *>          IHI is INTEGER
   *>          ILO and IHI mark the rows and columns of H which are in
   *>          Hessenberg form.  It is assumed that A is already upper
   *>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
   *>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
   *> \endverbatim
   *>
   *> \param[in,out] H
   *> \verbatim
   *>          H is COMPLEX*16 array, dimension (LDH, N)
   *>          On entry, the N-by-N upper Hessenberg matrix H.
   *>          On exit, if JOB = 'S', H contains the upper triangular
   *>          matrix S from the generalized Schur factorization.
   *>          If JOB = 'E', the diagonal of H matches that of S, but
   *>          the rest of H is unspecified.
   *> \endverbatim
   *>
   *> \param[in] LDH
   *> \verbatim
   *>          LDH is INTEGER
   *>          The leading dimension of the array H.  LDH >= max( 1, N ).
   *> \endverbatim
   *>
   *> \param[in,out] T
   *> \verbatim
   *>          T is COMPLEX*16 array, dimension (LDT, N)
   *>          On entry, the N-by-N upper triangular matrix T.
   *>          On exit, if JOB = 'S', T contains the upper triangular
   *>          matrix P from the generalized Schur factorization.
   *>          If JOB = 'E', the diagonal of T matches that of P, but
   *>          the rest of T is unspecified.
   *> \endverbatim
   *>
   *> \param[in] LDT
   *> \verbatim
   *>          LDT is INTEGER
   *>          The leading dimension of the array T.  LDT >= max( 1, N ).
   *> \endverbatim
   *>
   *> \param[out] ALPHA
   *> \verbatim
   *>          ALPHA is COMPLEX*16 array, dimension (N)
   *>          The complex scalars alpha that define the eigenvalues of
   *>          GNEP.  ALPHA(i) = S(i,i) in the generalized Schur
   *>          factorization.
   *> \endverbatim
   *>
   *> \param[out] BETA
   *> \verbatim
   *>          BETA is COMPLEX*16 array, dimension (N)
   *>          The real non-negative scalars beta that define the
   *>          eigenvalues of GNEP.  BETA(i) = P(i,i) in the generalized
   *>          Schur factorization.
   *>
   *>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
   *>          represent the j-th eigenvalue of the matrix pair (A,B), in
   *>          one of the forms lambda = alpha/beta or mu = beta/alpha.
   *>          Since either lambda or mu may overflow, they should not,
   *>          in general, be computed.
   *> \endverbatim
   *>
   *> \param[in,out] Q
   *> \verbatim
   *>          Q is COMPLEX*16 array, dimension (LDQ, N)
   *>          On entry, if COMPQ = 'V', the unitary matrix Q1 used in the
   *>          reduction of (A,B) to generalized Hessenberg form.
   *>          On exit, if COMPQ = 'I', the unitary matrix of left Schur
   *>          vectors of (H,T), and if COMPQ = 'V', the unitary matrix of
   *>          left Schur vectors of (A,B).
   *>          Not referenced if COMPQ = 'N'.
   *> \endverbatim
   *>
   *> \param[in] LDQ
   *> \verbatim
   *>          LDQ is INTEGER
   *>          The leading dimension of the array Q.  LDQ >= 1.
   *>          If COMPQ='V' or 'I', then LDQ >= N.
   *> \endverbatim
   *>
   *> \param[in,out] Z
   *> \verbatim
   *>          Z is COMPLEX*16 array, dimension (LDZ, N)
   *>          On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
   *>          reduction of (A,B) to generalized Hessenberg form.
   *>          On exit, if COMPZ = 'I', the unitary matrix of right Schur
   *>          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
   *>          right Schur vectors of (A,B).
   *>          Not referenced if COMPZ = 'N'.
   *> \endverbatim
   *>
   *> \param[in] LDZ
   *> \verbatim
   *>          LDZ is INTEGER
   *>          The leading dimension of the array Z.  LDZ >= 1.
   *>          If COMPZ='V' or 'I', then LDZ >= N.
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   *>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK.  LWORK >= max(1,N).
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal size of the WORK array, returns
   *>          this value as the first entry of the WORK array, and no error
   *>          message related to LWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] RWORK
   *> \verbatim
   *>          RWORK is DOUBLE PRECISION array, dimension (N)
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0: successful exit
   *>          < 0: if INFO = -i, the i-th argument had an illegal value
   *>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
   *>                     in Schur form, but ALPHA(i) and BETA(i),
   *>                     i=INFO+1,...,N should be correct.
   *>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
   *>                     in Schur form, but ALPHA(i) and BETA(i),
   *>                     i=INFO-N+1,...,N should be correct.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee
   *> \author Univ. of California Berkeley
   *> \author Univ. of Colorado Denver
   *> \author NAG Ltd.
   *
   *> \ingroup complex16GEcomputational
   *
   *> \par Further Details:
   *  =====================
   *>
   *> \verbatim
   *>
   *>  We assume that complex ABS works as long as its value is less than
   *>  overflow.
   *> \endverbatim
   *>
   *  =====================================================================
       SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,        SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,       $                   ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
      $                   RWORK, INFO )       $                   RWORK, INFO )
 *  *
 *  -- LAPACK routine (version 3.2) --  *  -- LAPACK computational routine --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          COMPQ, COMPZ, JOB        CHARACTER          COMPQ, COMPZ, JOB
Line 18 Line 297
      $                   Z( LDZ, * )       $                   Z( LDZ, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),  
 *  where H is an upper Hessenberg matrix and T is upper triangular,  
 *  using the single-shift QZ method.  
 *  Matrix pairs of this type are produced by the reduction to  
 *  generalized upper Hessenberg form of a complex matrix pair (A,B):  
 *    
 *     A = Q1*H*Z1**H,  B = Q1*T*Z1**H,  
 *    
 *  as computed by ZGGHRD.  
 *    
 *  If JOB='S', then the Hessenberg-triangular pair (H,T) is  
 *  also reduced to generalized Schur form,  
 *    
 *     H = Q*S*Z**H,  T = Q*P*Z**H,  
 *    
 *  where Q and Z are unitary matrices and S and P are upper triangular.  
 *    
 *  Optionally, the unitary matrix Q from the generalized Schur  
 *  factorization may be postmultiplied into an input matrix Q1, and the  
 *  unitary matrix Z may be postmultiplied into an input matrix Z1.  
 *  If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced  
 *  the matrix pair (A,B) to generalized Hessenberg form, then the output  
 *  matrices Q1*Q and Z1*Z are the unitary factors from the generalized  
 *  Schur factorization of (A,B):  
 *    
 *     A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.  
 *    
 *  To avoid overflow, eigenvalues of the matrix pair (H,T)  
 *  (equivalently, of (A,B)) are computed as a pair of complex values  
 *  (alpha,beta).  If beta is nonzero, lambda = alpha / beta is an  
 *  eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)  
 *     A*x = lambda*B*x  
 *  and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the  
 *  alternate form of the GNEP  
 *     mu*A*y = B*y.  
 *  The values of alpha and beta for the i-th eigenvalue can be read  
 *  directly from the generalized Schur form:  alpha = S(i,i),  
 *  beta = P(i,i).  
 *  
 *  Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix  
 *       Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),  
 *       pp. 241--256.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  JOB     (input) CHARACTER*1  
 *          = 'E': Compute eigenvalues only;  
 *          = 'S': Computer eigenvalues and the Schur form.  
 *  
 *  COMPQ   (input) CHARACTER*1  
 *          = 'N': Left Schur vectors (Q) are not computed;  
 *          = 'I': Q is initialized to the unit matrix and the matrix Q  
 *                 of left Schur vectors of (H,T) is returned;  
 *          = 'V': Q must contain a unitary matrix Q1 on entry and  
 *                 the product Q1*Q is returned.  
 *  
 *  COMPZ   (input) CHARACTER*1  
 *          = 'N': Right Schur vectors (Z) are not computed;  
 *          = 'I': Q is initialized to the unit matrix and the matrix Z  
 *                 of right Schur vectors of (H,T) is returned;  
 *          = 'V': Z must contain a unitary matrix Z1 on entry and  
 *                 the product Z1*Z is returned.  
 *  
 *  N       (input) INTEGER  
 *          The order of the matrices H, T, Q, and Z.  N >= 0.  
 *  
 *  ILO     (input) INTEGER  
 *  IHI     (input) INTEGER  
 *          ILO and IHI mark the rows and columns of H which are in  
 *          Hessenberg form.  It is assumed that A is already upper  
 *          triangular in rows and columns 1:ILO-1 and IHI+1:N.  
 *          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.  
 *  
 *  H       (input/output) COMPLEX*16 array, dimension (LDH, N)  
 *          On entry, the N-by-N upper Hessenberg matrix H.  
 *          On exit, if JOB = 'S', H contains the upper triangular  
 *          matrix S from the generalized Schur factorization.  
 *          If JOB = 'E', the diagonal of H matches that of S, but  
 *          the rest of H is unspecified.  
 *  
 *  LDH     (input) INTEGER  
 *          The leading dimension of the array H.  LDH >= max( 1, N ).  
 *  
 *  T       (input/output) COMPLEX*16 array, dimension (LDT, N)  
 *          On entry, the N-by-N upper triangular matrix T.  
 *          On exit, if JOB = 'S', T contains the upper triangular  
 *          matrix P from the generalized Schur factorization.  
 *          If JOB = 'E', the diagonal of T matches that of P, but  
 *          the rest of T is unspecified.  
 *  
 *  LDT     (input) INTEGER  
 *          The leading dimension of the array T.  LDT >= max( 1, N ).  
 *  
 *  ALPHA   (output) COMPLEX*16 array, dimension (N)  
 *          The complex scalars alpha that define the eigenvalues of  
 *          GNEP.  ALPHA(i) = S(i,i) in the generalized Schur  
 *          factorization.  
 *  
 *  BETA    (output) COMPLEX*16 array, dimension (N)  
 *          The real non-negative scalars beta that define the  
 *          eigenvalues of GNEP.  BETA(i) = P(i,i) in the generalized  
 *          Schur factorization.  
 *  
 *          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)  
 *          represent the j-th eigenvalue of the matrix pair (A,B), in  
 *          one of the forms lambda = alpha/beta or mu = beta/alpha.  
 *          Since either lambda or mu may overflow, they should not,  
 *          in general, be computed.  
 *  
 *  Q       (input/output) COMPLEX*16 array, dimension (LDQ, N)  
 *          On entry, if COMPZ = 'V', the unitary matrix Q1 used in the  
 *          reduction of (A,B) to generalized Hessenberg form.  
 *          On exit, if COMPZ = 'I', the unitary matrix of left Schur  
 *          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of  
 *          left Schur vectors of (A,B).  
 *          Not referenced if COMPZ = 'N'.  
 *  
 *  LDQ     (input) INTEGER  
 *          The leading dimension of the array Q.  LDQ >= 1.  
 *          If COMPQ='V' or 'I', then LDQ >= N.  
 *  
 *  Z       (input/output) COMPLEX*16 array, dimension (LDZ, N)  
 *          On entry, if COMPZ = 'V', the unitary matrix Z1 used in the  
 *          reduction of (A,B) to generalized Hessenberg form.  
 *          On exit, if COMPZ = 'I', the unitary matrix of right Schur  
 *          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of  
 *          right Schur vectors of (A,B).  
 *          Not referenced if COMPZ = 'N'.  
 *  
 *  LDZ     (input) INTEGER  
 *          The leading dimension of the array Z.  LDZ >= 1.  
 *          If COMPZ='V' or 'I', then LDZ >= N.  
 *  
 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))  
 *          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK.  LWORK >= max(1,N).  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal size of the WORK array, returns  
 *          this value as the first entry of the WORK array, and no error  
 *          message related to LWORK is issued by XERBLA.  
 *  
 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)  
 *  
 *  INFO    (output) INTEGER  
 *          = 0: successful exit  
 *          < 0: if INFO = -i, the i-th argument had an illegal value  
 *          = 1,...,N: the QZ iteration did not converge.  (H,T) is not  
 *                     in Schur form, but ALPHA(i) and BETA(i),  
 *                     i=INFO+1,...,N should be correct.  
 *          = N+1,...,2*N: the shift calculation failed.  (H,T) is not  
 *                     in Schur form, but ALPHA(i) and BETA(i),  
 *                     i=INFO-N+1,...,N should be correct.  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  We assume that complex ABS works as long as its value is less than  
 *  overflow.  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..
Line 203 Line 316
       DOUBLE PRECISION   ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL,        DOUBLE PRECISION   ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL,
      $                   C, SAFMIN, TEMP, TEMP2, TEMPR, ULP       $                   C, SAFMIN, TEMP, TEMP2, TEMPR, ULP
       COMPLEX*16         ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2,        COMPLEX*16         ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2,
      $                   CTEMP3, ESHIFT, RTDISC, S, SHIFT, SIGNBC, T1,       $                   CTEMP3, ESHIFT, S, SHIFT, SIGNBC,
      $                   U12, X       $                   U12, X, ABI12, Y
 *     ..  *     ..
 *     .. External Functions ..  *     .. External Functions ..
         COMPLEX*16         ZLADIV
       LOGICAL            LSAME        LOGICAL            LSAME
       DOUBLE PRECISION   DLAMCH, ZLANHS        DOUBLE PRECISION   DLAMCH, ZLANHS
       EXTERNAL           LSAME, DLAMCH, ZLANHS        EXTERNAL           ZLADIV, LSAME, DLAMCH, ZLANHS
 *     ..  *     ..
 *     .. External Subroutines ..  *     .. External Subroutines ..
       EXTERNAL           XERBLA, ZLARTG, ZLASET, ZROT, ZSCAL        EXTERNAL           XERBLA, ZLARTG, ZLASET, ZROT, ZSCAL
Line 235 Line 349
          ILSCHR = .TRUE.           ILSCHR = .TRUE.
          ISCHUR = 2           ISCHUR = 2
       ELSE        ELSE
            ILSCHR = .TRUE.
          ISCHUR = 0           ISCHUR = 0
       END IF        END IF
 *  *
Line 248 Line 363
          ILQ = .TRUE.           ILQ = .TRUE.
          ICOMPQ = 3           ICOMPQ = 3
       ELSE        ELSE
            ILQ = .TRUE.
          ICOMPQ = 0           ICOMPQ = 0
       END IF        END IF
 *  *
Line 261 Line 377
          ILZ = .TRUE.           ILZ = .TRUE.
          ICOMPZ = 3           ICOMPZ = 3
       ELSE        ELSE
            ILZ = .TRUE.
          ICOMPZ = 0           ICOMPZ = 0
       END IF        END IF
 *  *
Line 338 Line 455
                CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )                 CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
                CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )                 CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
             ELSE              ELSE
                H( J, J ) = H( J, J )*SIGNBC                 CALL ZSCAL( 1, SIGNBC, H( J, J ), 1 )
             END IF              END IF
             IF( ILZ )              IF( ILZ )
      $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )       $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
Line 399 Line 516
          IF( ILAST.EQ.ILO ) THEN           IF( ILAST.EQ.ILO ) THEN
             GO TO 60              GO TO 60
          ELSE           ELSE
             IF( ABS1( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN              IF( ABS1( H( ILAST, ILAST-1 ) ).LE.MAX( SAFMIN, ULP*( 
        $         ABS1( H( ILAST, ILAST ) ) + ABS1( H( ILAST-1, ILAST-1 ) 
        $         ) ) ) ) THEN
                H( ILAST, ILAST-1 ) = CZERO                 H( ILAST, ILAST-1 ) = CZERO
                GO TO 60                 GO TO 60
             END IF              END IF
Line 419 Line 538
             IF( J.EQ.ILO ) THEN              IF( J.EQ.ILO ) THEN
                ILAZRO = .TRUE.                 ILAZRO = .TRUE.
             ELSE              ELSE
                IF( ABS1( H( J, J-1 ) ).LE.ATOL ) THEN                 IF( ABS1( H( J, J-1 ) ).LE.MAX( SAFMIN, ULP*( 
        $            ABS1( H( J, J ) ) + ABS1( H( J-1, J-1 ) ) 
        $            ) ) ) THEN
                   H( J, J-1 ) = CZERO                    H( J, J-1 ) = CZERO
                   ILAZRO = .TRUE.                    ILAZRO = .TRUE.
                ELSE                 ELSE
Line 550 Line 671
                CALL ZSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ),                 CALL ZSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ),
      $                     1 )       $                     1 )
             ELSE              ELSE
                H( ILAST, ILAST ) = H( ILAST, ILAST )*SIGNBC                 CALL ZSCAL( 1, SIGNBC, H( ILAST, ILAST ), 1 )
             END IF              END IF
             IF( ILZ )              IF( ILZ )
      $         CALL ZSCAL( N, SIGNBC, Z( 1, ILAST ), 1 )       $         CALL ZSCAL( N, SIGNBC, Z( 1, ILAST ), 1 )
Line 614 Line 735
             AD22 = ( ASCALE*H( ILAST, ILAST ) ) /              AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
      $             ( BSCALE*T( ILAST, ILAST ) )       $             ( BSCALE*T( ILAST, ILAST ) )
             ABI22 = AD22 - U12*AD21              ABI22 = AD22 - U12*AD21
               ABI12 = AD12 - U12*AD11
 *  *
             T1 = HALF*( AD11+ABI22 )              SHIFT = ABI22
             RTDISC = SQRT( T1**2+AD12*AD21-AD11*AD22 )              CTEMP = SQRT( ABI12 )*SQRT( AD21 )
             TEMP = DBLE( T1-ABI22 )*DBLE( RTDISC ) +              TEMP = ABS1( CTEMP )
      $             DIMAG( T1-ABI22 )*DIMAG( RTDISC )              IF( CTEMP.NE.ZERO ) THEN
             IF( TEMP.LE.ZERO ) THEN                 X = HALF*( AD11-SHIFT )
                SHIFT = T1 + RTDISC                 TEMP2 = ABS1( X )
             ELSE                 TEMP = MAX( TEMP, ABS1( X ) )
                SHIFT = T1 - RTDISC                 Y = TEMP*SQRT( ( X / TEMP )**2+( CTEMP / TEMP )**2 )
                  IF( TEMP2.GT.ZERO ) THEN
                     IF( DBLE( X / TEMP2 )*DBLE( Y )+
        $                DIMAG( X / TEMP2 )*DIMAG( Y ).LT.ZERO )Y = -Y
                  END IF
                  SHIFT = SHIFT - CTEMP*ZLADIV( CTEMP, ( X+Y ) )
             END IF              END IF
          ELSE           ELSE
 *  *
 *           Exceptional shift.  Chosen for no particularly good reason.  *           Exceptional shift.  Chosen for no particularly good reason.
 *  *
             ESHIFT = ESHIFT + DCONJG( ( ASCALE*H( ILAST-1, ILAST ) ) /              IF( ( IITER / 20 )*20.EQ.IITER .AND. 
      $               ( BSCALE*T( ILAST-1, ILAST-1 ) ) )       $         BSCALE*ABS1(T( ILAST, ILAST )).GT.SAFMIN ) THEN
                  ESHIFT = ESHIFT + ( ASCALE*H( ILAST,
        $            ILAST ) )/( BSCALE*T( ILAST, ILAST ) )
               ELSE
                  ESHIFT = ESHIFT + ( ASCALE*H( ILAST,
        $            ILAST-1 ) )/( BSCALE*T( ILAST-1, ILAST-1 ) )
               END IF
             SHIFT = ESHIFT              SHIFT = ESHIFT
          END IF           END IF
 *  *
Line 734 Line 867
                CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )                 CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
                CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )                 CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
             ELSE              ELSE
                H( J, J ) = H( J, J )*SIGNBC                 CALL ZSCAL( 1, SIGNBC, H( J, J ), 1 )
             END IF              END IF
             IF( ILZ )              IF( ILZ )
      $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )       $         CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )

Removed from v.1.6  
changed lines
  Added in v.1.20


CVSweb interface <joel.bertrand@systella.fr>