File:  [local] / rpl / lapack / lapack / zhfrk.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:15 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
    2:      $                  C )
    3: *
    4: *  -- LAPACK routine (version 3.3.1)                                    --
    5: *
    6: *  -- Contributed by Julien Langou of the Univ. of Colorado Denver    --
    7: *  -- April 2011                                                      --
    8: *
    9: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   10: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   11: *
   12: *     ..
   13: *     .. Scalar Arguments ..
   14:       DOUBLE PRECISION   ALPHA, BETA
   15:       INTEGER            K, LDA, N
   16:       CHARACTER          TRANS, TRANSR, UPLO
   17: *     ..
   18: *     .. Array Arguments ..
   19:       COMPLEX*16         A( LDA, * ), C( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  Level 3 BLAS like routine for C in RFP Format.
   26: *
   27: *  ZHFRK performs one of the Hermitian rank--k operations
   28: *
   29: *     C := alpha*A*A**H + beta*C,
   30: *
   31: *  or
   32: *
   33: *     C := alpha*A**H*A + beta*C,
   34: *
   35: *  where alpha and beta are real scalars, C is an n--by--n Hermitian
   36: *  matrix and A is an n--by--k matrix in the first case and a k--by--n
   37: *  matrix in the second case.
   38: *
   39: *  Arguments
   40: *  ==========
   41: *
   42: *  TRANSR  (input) CHARACTER*1
   43: *          = 'N':  The Normal Form of RFP A is stored;
   44: *          = 'C':  The Conjugate-transpose Form of RFP A is stored.
   45: *
   46: *  UPLO    (input) CHARACTER*1
   47: *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
   48: *           triangular  part  of the  array  C  is to be  referenced  as
   49: *           follows:
   50: *
   51: *              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
   52: *                                  is to be referenced.
   53: *
   54: *              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
   55: *                                  is to be referenced.
   56: *
   57: *           Unchanged on exit.
   58: *
   59: *  TRANS   (input) CHARACTER*1
   60: *           On entry,  TRANS  specifies the operation to be performed as
   61: *           follows:
   62: *
   63: *              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C.
   64: *
   65: *              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C.
   66: *
   67: *           Unchanged on exit.
   68: *
   69: *  N       (input) INTEGER
   70: *           On entry,  N specifies the order of the matrix C.  N must be
   71: *           at least zero.
   72: *           Unchanged on exit.
   73: *
   74: *  K       (input) INTEGER
   75: *           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
   76: *           of  columns   of  the   matrix   A,   and  on   entry   with
   77: *           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
   78: *           matrix A.  K must be at least zero.
   79: *           Unchanged on exit.
   80: *
   81: *  ALPHA   (input) DOUBLE PRECISION
   82: *           On entry, ALPHA specifies the scalar alpha.
   83: *           Unchanged on exit.
   84: *
   85: *  A       (input) COMPLEX*16 array of DIMENSION (LDA,ka)
   86: *           where KA
   87: *           is K  when TRANS = 'N' or 'n', and is N otherwise. Before
   88: *           entry with TRANS = 'N' or 'n', the leading N--by--K part of
   89: *           the array A must contain the matrix A, otherwise the leading
   90: *           K--by--N part of the array A must contain the matrix A.
   91: *           Unchanged on exit.
   92: *
   93: *  LDA     (input) INTEGER
   94: *           On entry, LDA specifies the first dimension of A as declared
   95: *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
   96: *           then  LDA must be at least  max( 1, n ), otherwise  LDA must
   97: *           be at least  max( 1, k ).
   98: *           Unchanged on exit.
   99: *
  100: *  BETA    (input) DOUBLE PRECISION
  101: *           On entry, BETA specifies the scalar beta.
  102: *           Unchanged on exit.
  103: *
  104: *  C       (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
  105: *           On entry, the matrix A in RFP Format. RFP Format is
  106: *           described by TRANSR, UPLO and N. Note that the imaginary
  107: *           parts of the diagonal elements need not be set, they are
  108: *           assumed to be zero, and on exit they are set to zero.
  109: *
  110: *  =====================================================================
  111: *
  112: *     .. Parameters ..
  113:       DOUBLE PRECISION   ONE, ZERO
  114:       COMPLEX*16         CZERO
  115:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  116:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  117: *     ..
  118: *     .. Local Scalars ..
  119:       LOGICAL            LOWER, NORMALTRANSR, NISODD, NOTRANS
  120:       INTEGER            INFO, NROWA, J, NK, N1, N2
  121:       COMPLEX*16         CALPHA, CBETA
  122: *     ..
  123: *     .. External Functions ..
  124:       LOGICAL            LSAME
  125:       EXTERNAL           LSAME
  126: *     ..
  127: *     .. External Subroutines ..
  128:       EXTERNAL           XERBLA, ZGEMM, ZHERK
  129: *     ..
  130: *     .. Intrinsic Functions ..
  131:       INTRINSIC          MAX, DCMPLX
  132: *     ..
  133: *     .. Executable Statements ..
  134: *
  135: *
  136: *     Test the input parameters.
  137: *
  138:       INFO = 0
  139:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  140:       LOWER = LSAME( UPLO, 'L' )
  141:       NOTRANS = LSAME( TRANS, 'N' )
  142: *
  143:       IF( NOTRANS ) THEN
  144:          NROWA = N
  145:       ELSE
  146:          NROWA = K
  147:       END IF
  148: *
  149:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  150:          INFO = -1
  151:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  152:          INFO = -2
  153:       ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  154:          INFO = -3
  155:       ELSE IF( N.LT.0 ) THEN
  156:          INFO = -4
  157:       ELSE IF( K.LT.0 ) THEN
  158:          INFO = -5
  159:       ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  160:          INFO = -8
  161:       END IF
  162:       IF( INFO.NE.0 ) THEN
  163:          CALL XERBLA( 'ZHFRK ', -INFO )
  164:          RETURN
  165:       END IF
  166: *
  167: *     Quick return if possible.
  168: *
  169: *     The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  170: *     done (it is in ZHERK for example) and left in the general case.
  171: *
  172:       IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  173:      $    ( BETA.EQ.ONE ) ) )RETURN
  174: *
  175:       IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  176:          DO J = 1, ( ( N*( N+1 ) ) / 2 )
  177:             C( J ) = CZERO
  178:          END DO
  179:          RETURN
  180:       END IF
  181: *
  182:       CALPHA = DCMPLX( ALPHA, ZERO )
  183:       CBETA = DCMPLX( BETA, ZERO )
  184: *
  185: *     C is N-by-N.
  186: *     If N is odd, set NISODD = .TRUE., and N1 and N2.
  187: *     If N is even, NISODD = .FALSE., and NK.
  188: *
  189:       IF( MOD( N, 2 ).EQ.0 ) THEN
  190:          NISODD = .FALSE.
  191:          NK = N / 2
  192:       ELSE
  193:          NISODD = .TRUE.
  194:          IF( LOWER ) THEN
  195:             N2 = N / 2
  196:             N1 = N - N2
  197:          ELSE
  198:             N1 = N / 2
  199:             N2 = N - N1
  200:          END IF
  201:       END IF
  202: *
  203:       IF( NISODD ) THEN
  204: *
  205: *        N is odd
  206: *
  207:          IF( NORMALTRANSR ) THEN
  208: *
  209: *           N is odd and TRANSR = 'N'
  210: *
  211:             IF( LOWER ) THEN
  212: *
  213: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  214: *
  215:                IF( NOTRANS ) THEN
  216: *
  217: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  218: *
  219:                   CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  220:      $                        BETA, C( 1 ), N )
  221:                   CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  222:      $                        BETA, C( N+1 ), N )
  223:                   CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  224:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  225: *
  226:                ELSE
  227: *
  228: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  229: *
  230:                   CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  231:      $                        BETA, C( 1 ), N )
  232:                   CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  233:      $                        BETA, C( N+1 ), N )
  234:                   CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  235:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  236: *
  237:                END IF
  238: *
  239:             ELSE
  240: *
  241: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  242: *
  243:                IF( NOTRANS ) THEN
  244: *
  245: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  246: *
  247:                   CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  248:      $                        BETA, C( N2+1 ), N )
  249:                   CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  250:      $                        BETA, C( N1+1 ), N )
  251:                   CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  252:      $                        LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
  253: *
  254:                ELSE
  255: *
  256: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  257: *
  258:                   CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  259:      $                        BETA, C( N2+1 ), N )
  260:                   CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
  261:      $                        BETA, C( N1+1 ), N )
  262:                   CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  263:      $                        LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
  264: *
  265:                END IF
  266: *
  267:             END IF
  268: *
  269:          ELSE
  270: *
  271: *           N is odd, and TRANSR = 'C'
  272: *
  273:             IF( LOWER ) THEN
  274: *
  275: *              N is odd, TRANSR = 'C', and UPLO = 'L'
  276: *
  277:                IF( NOTRANS ) THEN
  278: *
  279: *                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  280: *
  281:                   CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  282:      $                        BETA, C( 1 ), N1 )
  283:                   CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  284:      $                        BETA, C( 2 ), N1 )
  285:                   CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  286:      $                        LDA, A( N1+1, 1 ), LDA, CBETA,
  287:      $                        C( N1*N1+1 ), N1 )
  288: *
  289:                ELSE
  290: *
  291: *                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  292: *
  293:                   CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  294:      $                        BETA, C( 1 ), N1 )
  295:                   CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  296:      $                        BETA, C( 2 ), N1 )
  297:                   CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  298:      $                        LDA, A( 1, N1+1 ), LDA, CBETA,
  299:      $                        C( N1*N1+1 ), N1 )
  300: *
  301:                END IF
  302: *
  303:             ELSE
  304: *
  305: *              N is odd, TRANSR = 'C', and UPLO = 'U'
  306: *
  307:                IF( NOTRANS ) THEN
  308: *
  309: *                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  310: *
  311:                   CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  312:      $                        BETA, C( N2*N2+1 ), N2 )
  313:                   CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  314:      $                        BETA, C( N1*N2+1 ), N2 )
  315:                   CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  316:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  317: *
  318:                ELSE
  319: *
  320: *                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  321: *
  322:                   CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  323:      $                        BETA, C( N2*N2+1 ), N2 )
  324:                   CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  325:      $                        BETA, C( N1*N2+1 ), N2 )
  326:                   CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  327:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  328: *
  329:                END IF
  330: *
  331:             END IF
  332: *
  333:          END IF
  334: *
  335:       ELSE
  336: *
  337: *        N is even
  338: *
  339:          IF( NORMALTRANSR ) THEN
  340: *
  341: *           N is even and TRANSR = 'N'
  342: *
  343:             IF( LOWER ) THEN
  344: *
  345: *              N is even, TRANSR = 'N', and UPLO = 'L'
  346: *
  347:                IF( NOTRANS ) THEN
  348: *
  349: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  350: *
  351:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  352:      $                        BETA, C( 2 ), N+1 )
  353:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  354:      $                        BETA, C( 1 ), N+1 )
  355:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  356:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  357:      $                        N+1 )
  358: *
  359:                ELSE
  360: *
  361: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  362: *
  363:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  364:      $                        BETA, C( 2 ), N+1 )
  365:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  366:      $                        BETA, C( 1 ), N+1 )
  367:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  368:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  369:      $                        N+1 )
  370: *
  371:                END IF
  372: *
  373:             ELSE
  374: *
  375: *              N is even, TRANSR = 'N', and UPLO = 'U'
  376: *
  377:                IF( NOTRANS ) THEN
  378: *
  379: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  380: *
  381:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  382:      $                        BETA, C( NK+2 ), N+1 )
  383:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  384:      $                        BETA, C( NK+1 ), N+1 )
  385:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  386:      $                        LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
  387:      $                        N+1 )
  388: *
  389:                ELSE
  390: *
  391: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  392: *
  393:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  394:      $                        BETA, C( NK+2 ), N+1 )
  395:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  396:      $                        BETA, C( NK+1 ), N+1 )
  397:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  398:      $                        LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
  399:      $                        N+1 )
  400: *
  401:                END IF
  402: *
  403:             END IF
  404: *
  405:          ELSE
  406: *
  407: *           N is even, and TRANSR = 'C'
  408: *
  409:             IF( LOWER ) THEN
  410: *
  411: *              N is even, TRANSR = 'C', and UPLO = 'L'
  412: *
  413:                IF( NOTRANS ) THEN
  414: *
  415: *                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  416: *
  417:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  418:      $                        BETA, C( NK+1 ), NK )
  419:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  420:      $                        BETA, C( 1 ), NK )
  421:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  422:      $                        LDA, A( NK+1, 1 ), LDA, CBETA,
  423:      $                        C( ( ( NK+1 )*NK )+1 ), NK )
  424: *
  425:                ELSE
  426: *
  427: *                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  428: *
  429:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  430:      $                        BETA, C( NK+1 ), NK )
  431:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  432:      $                        BETA, C( 1 ), NK )
  433:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  434:      $                        LDA, A( 1, NK+1 ), LDA, CBETA,
  435:      $                        C( ( ( NK+1 )*NK )+1 ), NK )
  436: *
  437:                END IF
  438: *
  439:             ELSE
  440: *
  441: *              N is even, TRANSR = 'C', and UPLO = 'U'
  442: *
  443:                IF( NOTRANS ) THEN
  444: *
  445: *                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  446: *
  447:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  448:      $                        BETA, C( NK*( NK+1 )+1 ), NK )
  449:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  450:      $                        BETA, C( NK*NK+1 ), NK )
  451:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  452:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  453: *
  454:                ELSE
  455: *
  456: *                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  457: *
  458:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  459:      $                        BETA, C( NK*( NK+1 )+1 ), NK )
  460:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  461:      $                        BETA, C( NK*NK+1 ), NK )
  462:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  463:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  464: *
  465:                END IF
  466: *
  467:             END IF
  468: *
  469:          END IF
  470: *
  471:       END IF
  472: *
  473:       RETURN
  474: *
  475: *     End of ZHFRK
  476: *
  477:       END

CVSweb interface <joel.bertrand@systella.fr>