File:  [local] / rpl / lapack / lapack / zhfrk.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:34 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
    2:      +                  C )
    3: *
    4: *  -- LAPACK routine (version 3.2.2)                                    --
    5: *
    6: *  -- Contributed by Julien Langou of the Univ. of Colorado Denver    --
    7: *  -- June 2010                                                       --
    8: *
    9: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   10: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   11: *
   12: *     ..
   13: *     .. Scalar Arguments ..
   14:       DOUBLE PRECISION   ALPHA, BETA
   15:       INTEGER            K, LDA, N
   16:       CHARACTER          TRANS, TRANSR, UPLO
   17: *     ..
   18: *     .. Array Arguments ..
   19:       COMPLEX*16         A( LDA, * ), C( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  Level 3 BLAS like routine for C in RFP Format.
   26: *
   27: *  ZHFRK performs one of the Hermitian rank--k operations
   28: *
   29: *     C := alpha*A*conjg( A' ) + beta*C,
   30: *
   31: *  or
   32: *
   33: *     C := alpha*conjg( A' )*A + beta*C,
   34: *
   35: *  where alpha and beta are real scalars, C is an n--by--n Hermitian
   36: *  matrix and A is an n--by--k matrix in the first case and a k--by--n
   37: *  matrix in the second case.
   38: *
   39: *  Arguments
   40: *  ==========
   41: *
   42: *  TRANSR  (input) CHARACTER
   43: *          = 'N':  The Normal Form of RFP A is stored;
   44: *          = 'C':  The Conjugate-transpose Form of RFP A is stored.
   45: *
   46: *  UPLO    (input) CHARACTER
   47: *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
   48: *           triangular  part  of the  array  C  is to be  referenced  as
   49: *           follows:
   50: *
   51: *              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
   52: *                                  is to be referenced.
   53: *
   54: *              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
   55: *                                  is to be referenced.
   56: *
   57: *           Unchanged on exit.
   58: *
   59: *  TRANS   (input) CHARACTER
   60: *           On entry,  TRANS  specifies the operation to be performed as
   61: *           follows:
   62: *
   63: *              TRANS = 'N' or 'n'   C := alpha*A*conjg( A' ) + beta*C.
   64: *
   65: *              TRANS = 'C' or 'c'   C := alpha*conjg( A' )*A + beta*C.
   66: *
   67: *           Unchanged on exit.
   68: *
   69: *  N       (input) INTEGER
   70: *           On entry,  N specifies the order of the matrix C.  N must be
   71: *           at least zero.
   72: *           Unchanged on exit.
   73: *
   74: *  K       (input) INTEGER
   75: *           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
   76: *           of  columns   of  the   matrix   A,   and  on   entry   with
   77: *           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
   78: *           matrix A.  K must be at least zero.
   79: *           Unchanged on exit.
   80: *
   81: *  ALPHA   (input) DOUBLE PRECISION
   82: *           On entry, ALPHA specifies the scalar alpha.
   83: *           Unchanged on exit.
   84: *
   85: *  A       (input) COMPLEX*16 array of DIMENSION (LDA,ka)
   86: *           where KA
   87: *           is K  when TRANS = 'N' or 'n', and is N otherwise. Before
   88: *           entry with TRANS = 'N' or 'n', the leading N--by--K part of
   89: *           the array A must contain the matrix A, otherwise the leading
   90: *           K--by--N part of the array A must contain the matrix A.
   91: *           Unchanged on exit.
   92: *
   93: *  LDA     (input) INTEGER
   94: *           On entry, LDA specifies the first dimension of A as declared
   95: *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
   96: *           then  LDA must be at least  max( 1, n ), otherwise  LDA must
   97: *           be at least  max( 1, k ).
   98: *           Unchanged on exit.
   99: *
  100: *  BETA    (input) DOUBLE PRECISION
  101: *           On entry, BETA specifies the scalar beta.
  102: *           Unchanged on exit.
  103: *
  104: *  C       (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
  105: *           On entry, the matrix A in RFP Format. RFP Format is
  106: *           described by TRANSR, UPLO and N. Note that the imaginary
  107: *           parts of the diagonal elements need not be set, they are
  108: *           assumed to be zero, and on exit they are set to zero.
  109: *
  110: *  Arguments
  111: *  ==========
  112: *
  113: *     ..
  114: *     .. Parameters ..
  115:       DOUBLE PRECISION   ONE, ZERO
  116:       COMPLEX*16         CZERO
  117:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  118:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  119: *     ..
  120: *     .. Local Scalars ..
  121:       LOGICAL            LOWER, NORMALTRANSR, NISODD, NOTRANS
  122:       INTEGER            INFO, NROWA, J, NK, N1, N2
  123:       COMPLEX*16         CALPHA, CBETA
  124: *     ..
  125: *     .. External Functions ..
  126:       LOGICAL            LSAME
  127:       EXTERNAL           LSAME
  128: *     ..
  129: *     .. External Subroutines ..
  130:       EXTERNAL           XERBLA, ZGEMM, ZHERK
  131: *     ..
  132: *     .. Intrinsic Functions ..
  133:       INTRINSIC          MAX, DCMPLX
  134: *     ..
  135: *     .. Executable Statements ..
  136: *
  137: *
  138: *     Test the input parameters.
  139: *
  140:       INFO = 0
  141:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  142:       LOWER = LSAME( UPLO, 'L' )
  143:       NOTRANS = LSAME( TRANS, 'N' )
  144: *
  145:       IF( NOTRANS ) THEN
  146:          NROWA = N
  147:       ELSE
  148:          NROWA = K
  149:       END IF
  150: *
  151:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  152:          INFO = -1
  153:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  154:          INFO = -2
  155:       ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  156:          INFO = -3
  157:       ELSE IF( N.LT.0 ) THEN
  158:          INFO = -4
  159:       ELSE IF( K.LT.0 ) THEN
  160:          INFO = -5
  161:       ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  162:          INFO = -8
  163:       END IF
  164:       IF( INFO.NE.0 ) THEN
  165:          CALL XERBLA( 'ZHFRK ', -INFO )
  166:          RETURN
  167:       END IF
  168: *
  169: *     Quick return if possible.
  170: *
  171: *     The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  172: *     done (it is in ZHERK for example) and left in the general case.
  173: *
  174:       IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  175:      +    ( BETA.EQ.ONE ) ) )RETURN
  176: *
  177:       IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  178:          DO J = 1, ( ( N*( N+1 ) ) / 2 )
  179:             C( J ) = CZERO
  180:          END DO
  181:          RETURN
  182:       END IF
  183: *
  184:       CALPHA = DCMPLX( ALPHA, ZERO )
  185:       CBETA = DCMPLX( BETA, ZERO )
  186: *
  187: *     C is N-by-N.
  188: *     If N is odd, set NISODD = .TRUE., and N1 and N2.
  189: *     If N is even, NISODD = .FALSE., and NK.
  190: *
  191:       IF( MOD( N, 2 ).EQ.0 ) THEN
  192:          NISODD = .FALSE.
  193:          NK = N / 2
  194:       ELSE
  195:          NISODD = .TRUE.
  196:          IF( LOWER ) THEN
  197:             N2 = N / 2
  198:             N1 = N - N2
  199:          ELSE
  200:             N1 = N / 2
  201:             N2 = N - N1
  202:          END IF
  203:       END IF
  204: *
  205:       IF( NISODD ) THEN
  206: *
  207: *        N is odd
  208: *
  209:          IF( NORMALTRANSR ) THEN
  210: *
  211: *           N is odd and TRANSR = 'N'
  212: *
  213:             IF( LOWER ) THEN
  214: *
  215: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  216: *
  217:                IF( NOTRANS ) THEN
  218: *
  219: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  220: *
  221:                   CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  222:      +                        BETA, C( 1 ), N )
  223:                   CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  224:      +                        BETA, C( N+1 ), N )
  225:                   CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  226:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  227: *
  228:                ELSE
  229: *
  230: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  231: *
  232:                   CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  233:      +                        BETA, C( 1 ), N )
  234:                   CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  235:      +                        BETA, C( N+1 ), N )
  236:                   CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  237:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  238: *
  239:                END IF
  240: *
  241:             ELSE
  242: *
  243: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  244: *
  245:                IF( NOTRANS ) THEN
  246: *
  247: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  248: *
  249:                   CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  250:      +                        BETA, C( N2+1 ), N )
  251:                   CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  252:      +                        BETA, C( N1+1 ), N )
  253:                   CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  254:      +                        LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
  255: *
  256:                ELSE
  257: *
  258: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  259: *
  260:                   CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  261:      +                        BETA, C( N2+1 ), N )
  262:                   CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
  263:      +                        BETA, C( N1+1 ), N )
  264:                   CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  265:      +                        LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
  266: *
  267:                END IF
  268: *
  269:             END IF
  270: *
  271:          ELSE
  272: *
  273: *           N is odd, and TRANSR = 'C'
  274: *
  275:             IF( LOWER ) THEN
  276: *
  277: *              N is odd, TRANSR = 'C', and UPLO = 'L'
  278: *
  279:                IF( NOTRANS ) THEN
  280: *
  281: *                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  282: *
  283:                   CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  284:      +                        BETA, C( 1 ), N1 )
  285:                   CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  286:      +                        BETA, C( 2 ), N1 )
  287:                   CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  288:      +                        LDA, A( N1+1, 1 ), LDA, CBETA,
  289:      +                        C( N1*N1+1 ), N1 )
  290: *
  291:                ELSE
  292: *
  293: *                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  294: *
  295:                   CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  296:      +                        BETA, C( 1 ), N1 )
  297:                   CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  298:      +                        BETA, C( 2 ), N1 )
  299:                   CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  300:      +                        LDA, A( 1, N1+1 ), LDA, CBETA,
  301:      +                        C( N1*N1+1 ), N1 )
  302: *
  303:                END IF
  304: *
  305:             ELSE
  306: *
  307: *              N is odd, TRANSR = 'C', and UPLO = 'U'
  308: *
  309:                IF( NOTRANS ) THEN
  310: *
  311: *                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  312: *
  313:                   CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  314:      +                        BETA, C( N2*N2+1 ), N2 )
  315:                   CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  316:      +                        BETA, C( N1*N2+1 ), N2 )
  317:                   CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  318:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  319: *
  320:                ELSE
  321: *
  322: *                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  323: *
  324:                   CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  325:      +                        BETA, C( N2*N2+1 ), N2 )
  326:                   CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  327:      +                        BETA, C( N1*N2+1 ), N2 )
  328:                   CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  329:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  330: *
  331:                END IF
  332: *
  333:             END IF
  334: *
  335:          END IF
  336: *
  337:       ELSE
  338: *
  339: *        N is even
  340: *
  341:          IF( NORMALTRANSR ) THEN
  342: *
  343: *           N is even and TRANSR = 'N'
  344: *
  345:             IF( LOWER ) THEN
  346: *
  347: *              N is even, TRANSR = 'N', and UPLO = 'L'
  348: *
  349:                IF( NOTRANS ) THEN
  350: *
  351: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  352: *
  353:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  354:      +                        BETA, C( 2 ), N+1 )
  355:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  356:      +                        BETA, C( 1 ), N+1 )
  357:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  358:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  359:      +                        N+1 )
  360: *
  361:                ELSE
  362: *
  363: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  364: *
  365:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  366:      +                        BETA, C( 2 ), N+1 )
  367:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  368:      +                        BETA, C( 1 ), N+1 )
  369:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  370:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  371:      +                        N+1 )
  372: *
  373:                END IF
  374: *
  375:             ELSE
  376: *
  377: *              N is even, TRANSR = 'N', and UPLO = 'U'
  378: *
  379:                IF( NOTRANS ) THEN
  380: *
  381: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  382: *
  383:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  384:      +                        BETA, C( NK+2 ), N+1 )
  385:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  386:      +                        BETA, C( NK+1 ), N+1 )
  387:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  388:      +                        LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
  389:      +                        N+1 )
  390: *
  391:                ELSE
  392: *
  393: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  394: *
  395:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  396:      +                        BETA, C( NK+2 ), N+1 )
  397:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  398:      +                        BETA, C( NK+1 ), N+1 )
  399:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  400:      +                        LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
  401:      +                        N+1 )
  402: *
  403:                END IF
  404: *
  405:             END IF
  406: *
  407:          ELSE
  408: *
  409: *           N is even, and TRANSR = 'C'
  410: *
  411:             IF( LOWER ) THEN
  412: *
  413: *              N is even, TRANSR = 'C', and UPLO = 'L'
  414: *
  415:                IF( NOTRANS ) THEN
  416: *
  417: *                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  418: *
  419:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  420:      +                        BETA, C( NK+1 ), NK )
  421:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  422:      +                        BETA, C( 1 ), NK )
  423:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  424:      +                        LDA, A( NK+1, 1 ), LDA, CBETA,
  425:      +                        C( ( ( NK+1 )*NK )+1 ), NK )
  426: *
  427:                ELSE
  428: *
  429: *                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  430: *
  431:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  432:      +                        BETA, C( NK+1 ), NK )
  433:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  434:      +                        BETA, C( 1 ), NK )
  435:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  436:      +                        LDA, A( 1, NK+1 ), LDA, CBETA,
  437:      +                        C( ( ( NK+1 )*NK )+1 ), NK )
  438: *
  439:                END IF
  440: *
  441:             ELSE
  442: *
  443: *              N is even, TRANSR = 'C', and UPLO = 'U'
  444: *
  445:                IF( NOTRANS ) THEN
  446: *
  447: *                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  448: *
  449:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  450:      +                        BETA, C( NK*( NK+1 )+1 ), NK )
  451:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  452:      +                        BETA, C( NK*NK+1 ), NK )
  453:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  454:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  455: *
  456:                ELSE
  457: *
  458: *                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  459: *
  460:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  461:      +                        BETA, C( NK*( NK+1 )+1 ), NK )
  462:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  463:      +                        BETA, C( NK*NK+1 ), NK )
  464:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  465:      +                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  466: *
  467:                END IF
  468: *
  469:             END IF
  470: *
  471:          END IF
  472: *
  473:       END IF
  474: *
  475:       RETURN
  476: *
  477: *     End of ZHFRK
  478: *
  479:       END

CVSweb interface <joel.bertrand@systella.fr>