File:  [local] / rpl / lapack / lapack / zhfrk.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:25 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHFRK performs a Hermitian rank-k operation for matrix in RFP format.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHFRK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhfrk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhfrk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhfrk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
   22: *                         C )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       DOUBLE PRECISION   ALPHA, BETA
   26: *       INTEGER            K, LDA, N
   27: *       CHARACTER          TRANS, TRANSR, UPLO
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       COMPLEX*16         A( LDA, * ), C( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> Level 3 BLAS like routine for C in RFP Format.
   40: *>
   41: *> ZHFRK performs one of the Hermitian rank--k operations
   42: *>
   43: *>    C := alpha*A*A**H + beta*C,
   44: *>
   45: *> or
   46: *>
   47: *>    C := alpha*A**H*A + beta*C,
   48: *>
   49: *> where alpha and beta are real scalars, C is an n--by--n Hermitian
   50: *> matrix and A is an n--by--k matrix in the first case and a k--by--n
   51: *> matrix in the second case.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] TRANSR
   58: *> \verbatim
   59: *>          TRANSR is CHARACTER*1
   60: *>          = 'N':  The Normal Form of RFP A is stored;
   61: *>          = 'C':  The Conjugate-transpose Form of RFP A is stored.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] UPLO
   65: *> \verbatim
   66: *>          UPLO is CHARACTER*1
   67: *>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
   68: *>           triangular  part  of the  array  C  is to be  referenced  as
   69: *>           follows:
   70: *>
   71: *>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
   72: *>                                  is to be referenced.
   73: *>
   74: *>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
   75: *>                                  is to be referenced.
   76: *>
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] TRANS
   81: *> \verbatim
   82: *>          TRANS is CHARACTER*1
   83: *>           On entry,  TRANS  specifies the operation to be performed as
   84: *>           follows:
   85: *>
   86: *>              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C.
   87: *>
   88: *>              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C.
   89: *>
   90: *>           Unchanged on exit.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] N
   94: *> \verbatim
   95: *>          N is INTEGER
   96: *>           On entry,  N specifies the order of the matrix C.  N must be
   97: *>           at least zero.
   98: *>           Unchanged on exit.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] K
  102: *> \verbatim
  103: *>          K is INTEGER
  104: *>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
  105: *>           of  columns   of  the   matrix   A,   and  on   entry   with
  106: *>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
  107: *>           matrix A.  K must be at least zero.
  108: *>           Unchanged on exit.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] ALPHA
  112: *> \verbatim
  113: *>          ALPHA is DOUBLE PRECISION
  114: *>           On entry, ALPHA specifies the scalar alpha.
  115: *>           Unchanged on exit.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] A
  119: *> \verbatim
  120: *>          A is COMPLEX*16 array, dimension (LDA,ka)
  121: *>           where KA
  122: *>           is K  when TRANS = 'N' or 'n', and is N otherwise. Before
  123: *>           entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124: *>           the array A must contain the matrix A, otherwise the leading
  125: *>           K--by--N part of the array A must contain the matrix A.
  126: *>           Unchanged on exit.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] LDA
  130: *> \verbatim
  131: *>          LDA is INTEGER
  132: *>           On entry, LDA specifies the first dimension of A as declared
  133: *>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
  134: *>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
  135: *>           be at least  max( 1, k ).
  136: *>           Unchanged on exit.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] BETA
  140: *> \verbatim
  141: *>          BETA is DOUBLE PRECISION
  142: *>           On entry, BETA specifies the scalar beta.
  143: *>           Unchanged on exit.
  144: *> \endverbatim
  145: *>
  146: *> \param[in,out] C
  147: *> \verbatim
  148: *>          C is COMPLEX*16 array, dimension (N*(N+1)/2)
  149: *>           On entry, the matrix A in RFP Format. RFP Format is
  150: *>           described by TRANSR, UPLO and N. Note that the imaginary
  151: *>           parts of the diagonal elements need not be set, they are
  152: *>           assumed to be zero, and on exit they are set to zero.
  153: *> \endverbatim
  154: *
  155: *  Authors:
  156: *  ========
  157: *
  158: *> \author Univ. of Tennessee
  159: *> \author Univ. of California Berkeley
  160: *> \author Univ. of Colorado Denver
  161: *> \author NAG Ltd.
  162: *
  163: *> \ingroup complex16OTHERcomputational
  164: *
  165: *  =====================================================================
  166:       SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  167:      $                  C )
  168: *
  169: *  -- LAPACK computational routine --
  170: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  171: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172: *
  173: *     .. Scalar Arguments ..
  174:       DOUBLE PRECISION   ALPHA, BETA
  175:       INTEGER            K, LDA, N
  176:       CHARACTER          TRANS, TRANSR, UPLO
  177: *     ..
  178: *     .. Array Arguments ..
  179:       COMPLEX*16         A( LDA, * ), C( * )
  180: *     ..
  181: *
  182: *  =====================================================================
  183: *
  184: *     .. Parameters ..
  185:       DOUBLE PRECISION   ONE, ZERO
  186:       COMPLEX*16         CZERO
  187:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  188:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  189: *     ..
  190: *     .. Local Scalars ..
  191:       LOGICAL            LOWER, NORMALTRANSR, NISODD, NOTRANS
  192:       INTEGER            INFO, NROWA, J, NK, N1, N2
  193:       COMPLEX*16         CALPHA, CBETA
  194: *     ..
  195: *     .. External Functions ..
  196:       LOGICAL            LSAME
  197:       EXTERNAL           LSAME
  198: *     ..
  199: *     .. External Subroutines ..
  200:       EXTERNAL           XERBLA, ZGEMM, ZHERK
  201: *     ..
  202: *     .. Intrinsic Functions ..
  203:       INTRINSIC          MAX, DCMPLX
  204: *     ..
  205: *     .. Executable Statements ..
  206: *
  207: *
  208: *     Test the input parameters.
  209: *
  210:       INFO = 0
  211:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  212:       LOWER = LSAME( UPLO, 'L' )
  213:       NOTRANS = LSAME( TRANS, 'N' )
  214: *
  215:       IF( NOTRANS ) THEN
  216:          NROWA = N
  217:       ELSE
  218:          NROWA = K
  219:       END IF
  220: *
  221:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  222:          INFO = -1
  223:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  224:          INFO = -2
  225:       ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  226:          INFO = -3
  227:       ELSE IF( N.LT.0 ) THEN
  228:          INFO = -4
  229:       ELSE IF( K.LT.0 ) THEN
  230:          INFO = -5
  231:       ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  232:          INFO = -8
  233:       END IF
  234:       IF( INFO.NE.0 ) THEN
  235:          CALL XERBLA( 'ZHFRK ', -INFO )
  236:          RETURN
  237:       END IF
  238: *
  239: *     Quick return if possible.
  240: *
  241: *     The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  242: *     done (it is in ZHERK for example) and left in the general case.
  243: *
  244:       IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  245:      $    ( BETA.EQ.ONE ) ) )RETURN
  246: *
  247:       IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  248:          DO J = 1, ( ( N*( N+1 ) ) / 2 )
  249:             C( J ) = CZERO
  250:          END DO
  251:          RETURN
  252:       END IF
  253: *
  254:       CALPHA = DCMPLX( ALPHA, ZERO )
  255:       CBETA = DCMPLX( BETA, ZERO )
  256: *
  257: *     C is N-by-N.
  258: *     If N is odd, set NISODD = .TRUE., and N1 and N2.
  259: *     If N is even, NISODD = .FALSE., and NK.
  260: *
  261:       IF( MOD( N, 2 ).EQ.0 ) THEN
  262:          NISODD = .FALSE.
  263:          NK = N / 2
  264:       ELSE
  265:          NISODD = .TRUE.
  266:          IF( LOWER ) THEN
  267:             N2 = N / 2
  268:             N1 = N - N2
  269:          ELSE
  270:             N1 = N / 2
  271:             N2 = N - N1
  272:          END IF
  273:       END IF
  274: *
  275:       IF( NISODD ) THEN
  276: *
  277: *        N is odd
  278: *
  279:          IF( NORMALTRANSR ) THEN
  280: *
  281: *           N is odd and TRANSR = 'N'
  282: *
  283:             IF( LOWER ) THEN
  284: *
  285: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  286: *
  287:                IF( NOTRANS ) THEN
  288: *
  289: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  290: *
  291:                   CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  292:      $                        BETA, C( 1 ), N )
  293:                   CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  294:      $                        BETA, C( N+1 ), N )
  295:                   CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  296:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  297: *
  298:                ELSE
  299: *
  300: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  301: *
  302:                   CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  303:      $                        BETA, C( 1 ), N )
  304:                   CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  305:      $                        BETA, C( N+1 ), N )
  306:                   CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  307:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  308: *
  309:                END IF
  310: *
  311:             ELSE
  312: *
  313: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  314: *
  315:                IF( NOTRANS ) THEN
  316: *
  317: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  318: *
  319:                   CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  320:      $                        BETA, C( N2+1 ), N )
  321:                   CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  322:      $                        BETA, C( N1+1 ), N )
  323:                   CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  324:      $                        LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
  325: *
  326:                ELSE
  327: *
  328: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  329: *
  330:                   CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  331:      $                        BETA, C( N2+1 ), N )
  332:                   CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
  333:      $                        BETA, C( N1+1 ), N )
  334:                   CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  335:      $                        LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
  336: *
  337:                END IF
  338: *
  339:             END IF
  340: *
  341:          ELSE
  342: *
  343: *           N is odd, and TRANSR = 'C'
  344: *
  345:             IF( LOWER ) THEN
  346: *
  347: *              N is odd, TRANSR = 'C', and UPLO = 'L'
  348: *
  349:                IF( NOTRANS ) THEN
  350: *
  351: *                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  352: *
  353:                   CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  354:      $                        BETA, C( 1 ), N1 )
  355:                   CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  356:      $                        BETA, C( 2 ), N1 )
  357:                   CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  358:      $                        LDA, A( N1+1, 1 ), LDA, CBETA,
  359:      $                        C( N1*N1+1 ), N1 )
  360: *
  361:                ELSE
  362: *
  363: *                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  364: *
  365:                   CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  366:      $                        BETA, C( 1 ), N1 )
  367:                   CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  368:      $                        BETA, C( 2 ), N1 )
  369:                   CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  370:      $                        LDA, A( 1, N1+1 ), LDA, CBETA,
  371:      $                        C( N1*N1+1 ), N1 )
  372: *
  373:                END IF
  374: *
  375:             ELSE
  376: *
  377: *              N is odd, TRANSR = 'C', and UPLO = 'U'
  378: *
  379:                IF( NOTRANS ) THEN
  380: *
  381: *                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  382: *
  383:                   CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  384:      $                        BETA, C( N2*N2+1 ), N2 )
  385:                   CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  386:      $                        BETA, C( N1*N2+1 ), N2 )
  387:                   CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  388:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  389: *
  390:                ELSE
  391: *
  392: *                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  393: *
  394:                   CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  395:      $                        BETA, C( N2*N2+1 ), N2 )
  396:                   CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  397:      $                        BETA, C( N1*N2+1 ), N2 )
  398:                   CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  399:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  400: *
  401:                END IF
  402: *
  403:             END IF
  404: *
  405:          END IF
  406: *
  407:       ELSE
  408: *
  409: *        N is even
  410: *
  411:          IF( NORMALTRANSR ) THEN
  412: *
  413: *           N is even and TRANSR = 'N'
  414: *
  415:             IF( LOWER ) THEN
  416: *
  417: *              N is even, TRANSR = 'N', and UPLO = 'L'
  418: *
  419:                IF( NOTRANS ) THEN
  420: *
  421: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  422: *
  423:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  424:      $                        BETA, C( 2 ), N+1 )
  425:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  426:      $                        BETA, C( 1 ), N+1 )
  427:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  428:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  429:      $                        N+1 )
  430: *
  431:                ELSE
  432: *
  433: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  434: *
  435:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  436:      $                        BETA, C( 2 ), N+1 )
  437:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  438:      $                        BETA, C( 1 ), N+1 )
  439:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  440:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  441:      $                        N+1 )
  442: *
  443:                END IF
  444: *
  445:             ELSE
  446: *
  447: *              N is even, TRANSR = 'N', and UPLO = 'U'
  448: *
  449:                IF( NOTRANS ) THEN
  450: *
  451: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  452: *
  453:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  454:      $                        BETA, C( NK+2 ), N+1 )
  455:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  456:      $                        BETA, C( NK+1 ), N+1 )
  457:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  458:      $                        LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
  459:      $                        N+1 )
  460: *
  461:                ELSE
  462: *
  463: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  464: *
  465:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  466:      $                        BETA, C( NK+2 ), N+1 )
  467:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  468:      $                        BETA, C( NK+1 ), N+1 )
  469:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  470:      $                        LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
  471:      $                        N+1 )
  472: *
  473:                END IF
  474: *
  475:             END IF
  476: *
  477:          ELSE
  478: *
  479: *           N is even, and TRANSR = 'C'
  480: *
  481:             IF( LOWER ) THEN
  482: *
  483: *              N is even, TRANSR = 'C', and UPLO = 'L'
  484: *
  485:                IF( NOTRANS ) THEN
  486: *
  487: *                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  488: *
  489:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  490:      $                        BETA, C( NK+1 ), NK )
  491:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  492:      $                        BETA, C( 1 ), NK )
  493:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  494:      $                        LDA, A( NK+1, 1 ), LDA, CBETA,
  495:      $                        C( ( ( NK+1 )*NK )+1 ), NK )
  496: *
  497:                ELSE
  498: *
  499: *                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  500: *
  501:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  502:      $                        BETA, C( NK+1 ), NK )
  503:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  504:      $                        BETA, C( 1 ), NK )
  505:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  506:      $                        LDA, A( 1, NK+1 ), LDA, CBETA,
  507:      $                        C( ( ( NK+1 )*NK )+1 ), NK )
  508: *
  509:                END IF
  510: *
  511:             ELSE
  512: *
  513: *              N is even, TRANSR = 'C', and UPLO = 'U'
  514: *
  515:                IF( NOTRANS ) THEN
  516: *
  517: *                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  518: *
  519:                   CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  520:      $                        BETA, C( NK*( NK+1 )+1 ), NK )
  521:                   CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  522:      $                        BETA, C( NK*NK+1 ), NK )
  523:                   CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  524:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  525: *
  526:                ELSE
  527: *
  528: *                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  529: *
  530:                   CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  531:      $                        BETA, C( NK*( NK+1 )+1 ), NK )
  532:                   CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  533:      $                        BETA, C( NK*NK+1 ), NK )
  534:                   CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  535:      $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  536: *
  537:                END IF
  538: *
  539:             END IF
  540: *
  541:          END IF
  542: *
  543:       END IF
  544: *
  545:       RETURN
  546: *
  547: *     End of ZHFRK
  548: *
  549:       END

CVSweb interface <joel.bertrand@systella.fr>