File:  [local] / rpl / lapack / lapack / zhetrs_rook.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:35 2014 UTC (10 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRS_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX            A( LDA, * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHETRS_ROOK solves a system of linear equations A*X = B with a complex
   39: *> Hermitian matrix A using the factorization A = U*D*U**H or
   40: *> A = L*D*L**H computed by ZHETRF_ROOK.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZHETRF_ROOK.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by ZHETRF_ROOK.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] B
   89: *> \verbatim
   90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   91: *>          On entry, the right hand side matrix B.
   92: *>          On exit, the solution matrix X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDB
   96: *> \verbatim
   97: *>          LDB is INTEGER
   98: *>          The leading dimension of the array B.  LDB >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[out] INFO
  102: *> \verbatim
  103: *>          INFO is INTEGER
  104: *>          = 0:  successful exit
  105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *> \endverbatim
  107: *
  108: *  Authors:
  109: *  ========
  110: *
  111: *> \author Univ. of Tennessee
  112: *> \author Univ. of California Berkeley
  113: *> \author Univ. of Colorado Denver
  114: *> \author NAG Ltd.
  115: *
  116: *> \date November 2013
  117: *
  118: *> \ingroup complex16HEcomputational
  119: *
  120: *> \par Contributors:
  121: *  ==================
  122: *>
  123: *> \verbatim
  124: *>
  125: *>  November 2013,  Igor Kozachenko,
  126: *>                  Computer Science Division,
  127: *>                  University of California, Berkeley
  128: *>
  129: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  130: *>                  School of Mathematics,
  131: *>                  University of Manchester
  132: *>
  133: *> \endverbatim
  134: *
  135: *  =====================================================================
  136:       SUBROUTINE ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  137:      $                        INFO )
  138: *
  139: *  -- LAPACK computational routine (version 3.5.0) --
  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142: *     November 2013
  143: *
  144: *     .. Scalar Arguments ..
  145:       CHARACTER          UPLO
  146:       INTEGER            INFO, LDA, LDB, N, NRHS
  147: *     ..
  148: *     .. Array Arguments ..
  149:       INTEGER            IPIV( * )
  150:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  151: *     ..
  152: *
  153: *  =====================================================================
  154: *
  155: *     .. Parameters ..
  156:       COMPLEX*16         ONE
  157:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  158: *     ..
  159: *     .. Local Scalars ..
  160:       LOGICAL            UPPER
  161:       INTEGER            J, K, KP
  162:       DOUBLE PRECISION   S
  163:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  164: *     ..
  165: *     .. External Functions ..
  166:       LOGICAL            LSAME
  167:       EXTERNAL           LSAME
  168: *     ..
  169: *     .. External Subroutines ..
  170:       EXTERNAL           ZGEMV, ZGERU, ZLACGV, ZDSCAL, ZSWAP, XERBLA
  171: *     ..
  172: *     .. Intrinsic Functions ..
  173:       INTRINSIC          DCONJG, MAX, DBLE
  174: *     ..
  175: *     .. Executable Statements ..
  176: *
  177:       INFO = 0
  178:       UPPER = LSAME( UPLO, 'U' )
  179:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  180:          INFO = -1
  181:       ELSE IF( N.LT.0 ) THEN
  182:          INFO = -2
  183:       ELSE IF( NRHS.LT.0 ) THEN
  184:          INFO = -3
  185:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  186:          INFO = -5
  187:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  188:          INFO = -8
  189:       END IF
  190:       IF( INFO.NE.0 ) THEN
  191:          CALL XERBLA( 'ZHETRS_ROOK', -INFO )
  192:          RETURN
  193:       END IF
  194: *
  195: *     Quick return if possible
  196: *
  197:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  198:      $   RETURN
  199: *
  200:       IF( UPPER ) THEN
  201: *
  202: *        Solve A*X = B, where A = U*D*U**H.
  203: *
  204: *        First solve U*D*X = B, overwriting B with X.
  205: *
  206: *        K is the main loop index, decreasing from N to 1 in steps of
  207: *        1 or 2, depending on the size of the diagonal blocks.
  208: *
  209:          K = N
  210:    10    CONTINUE
  211: *
  212: *        If K < 1, exit from loop.
  213: *
  214:          IF( K.LT.1 )
  215:      $      GO TO 30
  216: *
  217:          IF( IPIV( K ).GT.0 ) THEN
  218: *
  219: *           1 x 1 diagonal block
  220: *
  221: *           Interchange rows K and IPIV(K).
  222: *
  223:             KP = IPIV( K )
  224:             IF( KP.NE.K )
  225:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  226: *
  227: *           Multiply by inv(U(K)), where U(K) is the transformation
  228: *           stored in column K of A.
  229: *
  230:             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  231:      $                  B( 1, 1 ), LDB )
  232: *
  233: *           Multiply by the inverse of the diagonal block.
  234: *
  235:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  236:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  237:             K = K - 1
  238:          ELSE
  239: *
  240: *           2 x 2 diagonal block
  241: *
  242: *           Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1)
  243: *
  244:             KP = -IPIV( K )
  245:             IF( KP.NE.K )
  246:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  247: *
  248:             KP = -IPIV( K-1)
  249:             IF( KP.NE.K-1 )
  250:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  251: *
  252: *           Multiply by inv(U(K)), where U(K) is the transformation
  253: *           stored in columns K-1 and K of A.
  254: *
  255:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  256:      $                  B( 1, 1 ), LDB )
  257:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  258:      $                  LDB, B( 1, 1 ), LDB )
  259: *
  260: *           Multiply by the inverse of the diagonal block.
  261: *
  262:             AKM1K = A( K-1, K )
  263:             AKM1 = A( K-1, K-1 ) / AKM1K
  264:             AK = A( K, K ) / DCONJG( AKM1K )
  265:             DENOM = AKM1*AK - ONE
  266:             DO 20 J = 1, NRHS
  267:                BKM1 = B( K-1, J ) / AKM1K
  268:                BK = B( K, J ) / DCONJG( AKM1K )
  269:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  270:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  271:    20       CONTINUE
  272:             K = K - 2
  273:          END IF
  274: *
  275:          GO TO 10
  276:    30    CONTINUE
  277: *
  278: *        Next solve U**H *X = B, overwriting B with X.
  279: *
  280: *        K is the main loop index, increasing from 1 to N in steps of
  281: *        1 or 2, depending on the size of the diagonal blocks.
  282: *
  283:          K = 1
  284:    40    CONTINUE
  285: *
  286: *        If K > N, exit from loop.
  287: *
  288:          IF( K.GT.N )
  289:      $      GO TO 50
  290: *
  291:          IF( IPIV( K ).GT.0 ) THEN
  292: *
  293: *           1 x 1 diagonal block
  294: *
  295: *           Multiply by inv(U**H(K)), where U(K) is the transformation
  296: *           stored in column K of A.
  297: *
  298:             IF( K.GT.1 ) THEN
  299:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  300:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  301:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  302:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  303:             END IF
  304: *
  305: *           Interchange rows K and IPIV(K).
  306: *
  307:             KP = IPIV( K )
  308:             IF( KP.NE.K )
  309:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  310:             K = K + 1
  311:          ELSE
  312: *
  313: *           2 x 2 diagonal block
  314: *
  315: *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
  316: *           stored in columns K and K+1 of A.
  317: *
  318:             IF( K.GT.1 ) THEN
  319:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  320:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  321:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  322:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  323: *
  324:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  325:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  326:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  327:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  328:             END IF
  329: *
  330: *           Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1)
  331: *
  332:             KP = -IPIV( K )
  333:             IF( KP.NE.K )
  334:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  335: *
  336:             KP = -IPIV( K+1 )
  337:             IF( KP.NE.K+1 )
  338:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  339: *
  340:             K = K + 2
  341:          END IF
  342: *
  343:          GO TO 40
  344:    50    CONTINUE
  345: *
  346:       ELSE
  347: *
  348: *        Solve A*X = B, where A = L*D*L**H.
  349: *
  350: *        First solve L*D*X = B, overwriting B with X.
  351: *
  352: *        K is the main loop index, increasing from 1 to N in steps of
  353: *        1 or 2, depending on the size of the diagonal blocks.
  354: *
  355:          K = 1
  356:    60    CONTINUE
  357: *
  358: *        If K > N, exit from loop.
  359: *
  360:          IF( K.GT.N )
  361:      $      GO TO 80
  362: *
  363:          IF( IPIV( K ).GT.0 ) THEN
  364: *
  365: *           1 x 1 diagonal block
  366: *
  367: *           Interchange rows K and IPIV(K).
  368: *
  369:             KP = IPIV( K )
  370:             IF( KP.NE.K )
  371:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  372: *
  373: *           Multiply by inv(L(K)), where L(K) is the transformation
  374: *           stored in column K of A.
  375: *
  376:             IF( K.LT.N )
  377:      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  378:      $                     LDB, B( K+1, 1 ), LDB )
  379: *
  380: *           Multiply by the inverse of the diagonal block.
  381: *
  382:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  383:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  384:             K = K + 1
  385:          ELSE
  386: *
  387: *           2 x 2 diagonal block
  388: *
  389: *           Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1)
  390: *
  391:             KP = -IPIV( K )
  392:             IF( KP.NE.K )
  393:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  394: *
  395:             KP = -IPIV( K+1 )
  396:             IF( KP.NE.K+1 )
  397:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  398: *
  399: *           Multiply by inv(L(K)), where L(K) is the transformation
  400: *           stored in columns K and K+1 of A.
  401: *
  402:             IF( K.LT.N-1 ) THEN
  403:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  404:      $                     LDB, B( K+2, 1 ), LDB )
  405:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  406:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  407:             END IF
  408: *
  409: *           Multiply by the inverse of the diagonal block.
  410: *
  411:             AKM1K = A( K+1, K )
  412:             AKM1 = A( K, K ) / DCONJG( AKM1K )
  413:             AK = A( K+1, K+1 ) / AKM1K
  414:             DENOM = AKM1*AK - ONE
  415:             DO 70 J = 1, NRHS
  416:                BKM1 = B( K, J ) / DCONJG( AKM1K )
  417:                BK = B( K+1, J ) / AKM1K
  418:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  419:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  420:    70       CONTINUE
  421:             K = K + 2
  422:          END IF
  423: *
  424:          GO TO 60
  425:    80    CONTINUE
  426: *
  427: *        Next solve L**H *X = B, overwriting B with X.
  428: *
  429: *        K is the main loop index, decreasing from N to 1 in steps of
  430: *        1 or 2, depending on the size of the diagonal blocks.
  431: *
  432:          K = N
  433:    90    CONTINUE
  434: *
  435: *        If K < 1, exit from loop.
  436: *
  437:          IF( K.LT.1 )
  438:      $      GO TO 100
  439: *
  440:          IF( IPIV( K ).GT.0 ) THEN
  441: *
  442: *           1 x 1 diagonal block
  443: *
  444: *           Multiply by inv(L**H(K)), where L(K) is the transformation
  445: *           stored in column K of A.
  446: *
  447:             IF( K.LT.N ) THEN
  448:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  449:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  450:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  451:      $                     B( K, 1 ), LDB )
  452:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  453:             END IF
  454: *
  455: *           Interchange rows K and IPIV(K).
  456: *
  457:             KP = IPIV( K )
  458:             IF( KP.NE.K )
  459:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  460:             K = K - 1
  461:          ELSE
  462: *
  463: *           2 x 2 diagonal block
  464: *
  465: *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
  466: *           stored in columns K-1 and K of A.
  467: *
  468:             IF( K.LT.N ) THEN
  469:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  470:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  471:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  472:      $                     B( K, 1 ), LDB )
  473:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  474: *
  475:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  476:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  477:      $                     B( K+1, 1 ), LDB, A( K+1, K-1 ), 1, ONE,
  478:      $                     B( K-1, 1 ), LDB )
  479:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  480:             END IF
  481: *
  482: *           Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1)
  483: *
  484:             KP = -IPIV( K )
  485:             IF( KP.NE.K )
  486:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  487: *
  488:             KP = -IPIV( K-1 )
  489:             IF( KP.NE.K-1 )
  490:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  491: *
  492:             K = K - 2
  493:          END IF
  494: *
  495:          GO TO 90
  496:   100    CONTINUE
  497:       END IF
  498: *
  499:       RETURN
  500: *
  501: *     End of ZHETRS_ROOK
  502: *
  503:       END

CVSweb interface <joel.bertrand@systella.fr>