Annotation of rpl/lapack/lapack/zhetrs_rook.f, revision 1.6

1.1       bertrand    1: *> \brief \b ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHETRS_ROOK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_rook.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_rook.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_rook.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LDB, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX            A( LDA, * ), B( LDB, * )
                     30: *       ..
                     31: *
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZHETRS_ROOK solves a system of linear equations A*X = B with a complex
                     39: *> Hermitian matrix A using the factorization A = U*D*U**H or
                     40: *> A = L*D*L**H computed by ZHETRF_ROOK.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] UPLO
                     47: *> \verbatim
                     48: *>          UPLO is CHARACTER*1
                     49: *>          Specifies whether the details of the factorization are stored
                     50: *>          as an upper or lower triangular matrix.
                     51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
                     52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The order of the matrix A.  N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NRHS
                     62: *> \verbatim
                     63: *>          NRHS is INTEGER
                     64: *>          The number of right hand sides, i.e., the number of columns
                     65: *>          of the matrix B.  NRHS >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] A
                     69: *> \verbatim
                     70: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     71: *>          The block diagonal matrix D and the multipliers used to
                     72: *>          obtain the factor U or L as computed by ZHETRF_ROOK.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] IPIV
                     82: *> \verbatim
                     83: *>          IPIV is INTEGER array, dimension (N)
                     84: *>          Details of the interchanges and the block structure of D
                     85: *>          as determined by ZHETRF_ROOK.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                     91: *>          On entry, the right hand side matrix B.
                     92: *>          On exit, the solution matrix X.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDB
                     96: *> \verbatim
                     97: *>          LDB is INTEGER
                     98: *>          The leading dimension of the array B.  LDB >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] INFO
                    102: *> \verbatim
                    103: *>          INFO is INTEGER
                    104: *>          = 0:  successful exit
                    105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    106: *> \endverbatim
                    107: *
                    108: *  Authors:
                    109: *  ========
                    110: *
                    111: *> \author Univ. of Tennessee
                    112: *> \author Univ. of California Berkeley
                    113: *> \author Univ. of Colorado Denver
                    114: *> \author NAG Ltd.
                    115: *
                    116: *> \ingroup complex16HEcomputational
                    117: *
                    118: *> \par Contributors:
                    119: *  ==================
                    120: *>
                    121: *> \verbatim
                    122: *>
                    123: *>  November 2013,  Igor Kozachenko,
                    124: *>                  Computer Science Division,
                    125: *>                  University of California, Berkeley
                    126: *>
                    127: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    128: *>                  School of Mathematics,
                    129: *>                  University of Manchester
                    130: *>
                    131: *> \endverbatim
                    132: *
                    133: *  =====================================================================
                    134:       SUBROUTINE ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
                    135:      $                        INFO )
                    136: *
1.6     ! bertrand  137: *  -- LAPACK computational routine --
1.1       bertrand  138: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    139: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    140: *
                    141: *     .. Scalar Arguments ..
                    142:       CHARACTER          UPLO
                    143:       INTEGER            INFO, LDA, LDB, N, NRHS
                    144: *     ..
                    145: *     .. Array Arguments ..
                    146:       INTEGER            IPIV( * )
                    147:       COMPLEX*16         A( LDA, * ), B( LDB, * )
                    148: *     ..
                    149: *
                    150: *  =====================================================================
                    151: *
                    152: *     .. Parameters ..
                    153:       COMPLEX*16         ONE
                    154:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    155: *     ..
                    156: *     .. Local Scalars ..
                    157:       LOGICAL            UPPER
                    158:       INTEGER            J, K, KP
                    159:       DOUBLE PRECISION   S
                    160:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
                    161: *     ..
                    162: *     .. External Functions ..
                    163:       LOGICAL            LSAME
                    164:       EXTERNAL           LSAME
                    165: *     ..
                    166: *     .. External Subroutines ..
                    167:       EXTERNAL           ZGEMV, ZGERU, ZLACGV, ZDSCAL, ZSWAP, XERBLA
                    168: *     ..
                    169: *     .. Intrinsic Functions ..
                    170:       INTRINSIC          DCONJG, MAX, DBLE
                    171: *     ..
                    172: *     .. Executable Statements ..
                    173: *
                    174:       INFO = 0
                    175:       UPPER = LSAME( UPLO, 'U' )
                    176:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    177:          INFO = -1
                    178:       ELSE IF( N.LT.0 ) THEN
                    179:          INFO = -2
                    180:       ELSE IF( NRHS.LT.0 ) THEN
                    181:          INFO = -3
                    182:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    183:          INFO = -5
                    184:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    185:          INFO = -8
                    186:       END IF
                    187:       IF( INFO.NE.0 ) THEN
                    188:          CALL XERBLA( 'ZHETRS_ROOK', -INFO )
                    189:          RETURN
                    190:       END IF
                    191: *
                    192: *     Quick return if possible
                    193: *
                    194:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
                    195:      $   RETURN
                    196: *
                    197:       IF( UPPER ) THEN
                    198: *
                    199: *        Solve A*X = B, where A = U*D*U**H.
                    200: *
                    201: *        First solve U*D*X = B, overwriting B with X.
                    202: *
                    203: *        K is the main loop index, decreasing from N to 1 in steps of
                    204: *        1 or 2, depending on the size of the diagonal blocks.
                    205: *
                    206:          K = N
                    207:    10    CONTINUE
                    208: *
                    209: *        If K < 1, exit from loop.
                    210: *
                    211:          IF( K.LT.1 )
                    212:      $      GO TO 30
                    213: *
                    214:          IF( IPIV( K ).GT.0 ) THEN
                    215: *
                    216: *           1 x 1 diagonal block
                    217: *
                    218: *           Interchange rows K and IPIV(K).
                    219: *
                    220:             KP = IPIV( K )
                    221:             IF( KP.NE.K )
                    222:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    223: *
                    224: *           Multiply by inv(U(K)), where U(K) is the transformation
                    225: *           stored in column K of A.
                    226: *
                    227:             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    228:      $                  B( 1, 1 ), LDB )
                    229: *
                    230: *           Multiply by the inverse of the diagonal block.
                    231: *
                    232:             S = DBLE( ONE ) / DBLE( A( K, K ) )
                    233:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
                    234:             K = K - 1
                    235:          ELSE
                    236: *
                    237: *           2 x 2 diagonal block
                    238: *
                    239: *           Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1)
                    240: *
                    241:             KP = -IPIV( K )
                    242:             IF( KP.NE.K )
                    243:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    244: *
                    245:             KP = -IPIV( K-1)
                    246:             IF( KP.NE.K-1 )
                    247:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    248: *
                    249: *           Multiply by inv(U(K)), where U(K) is the transformation
                    250: *           stored in columns K-1 and K of A.
                    251: *
                    252:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    253:      $                  B( 1, 1 ), LDB )
                    254:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
                    255:      $                  LDB, B( 1, 1 ), LDB )
                    256: *
                    257: *           Multiply by the inverse of the diagonal block.
                    258: *
                    259:             AKM1K = A( K-1, K )
                    260:             AKM1 = A( K-1, K-1 ) / AKM1K
                    261:             AK = A( K, K ) / DCONJG( AKM1K )
                    262:             DENOM = AKM1*AK - ONE
                    263:             DO 20 J = 1, NRHS
                    264:                BKM1 = B( K-1, J ) / AKM1K
                    265:                BK = B( K, J ) / DCONJG( AKM1K )
                    266:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
                    267:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    268:    20       CONTINUE
                    269:             K = K - 2
                    270:          END IF
                    271: *
                    272:          GO TO 10
                    273:    30    CONTINUE
                    274: *
                    275: *        Next solve U**H *X = B, overwriting B with X.
                    276: *
                    277: *        K is the main loop index, increasing from 1 to N in steps of
                    278: *        1 or 2, depending on the size of the diagonal blocks.
                    279: *
                    280:          K = 1
                    281:    40    CONTINUE
                    282: *
                    283: *        If K > N, exit from loop.
                    284: *
                    285:          IF( K.GT.N )
                    286:      $      GO TO 50
                    287: *
                    288:          IF( IPIV( K ).GT.0 ) THEN
                    289: *
                    290: *           1 x 1 diagonal block
                    291: *
                    292: *           Multiply by inv(U**H(K)), where U(K) is the transformation
                    293: *           stored in column K of A.
                    294: *
                    295:             IF( K.GT.1 ) THEN
                    296:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    297:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
                    298:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
                    299:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    300:             END IF
                    301: *
                    302: *           Interchange rows K and IPIV(K).
                    303: *
                    304:             KP = IPIV( K )
                    305:             IF( KP.NE.K )
                    306:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    307:             K = K + 1
                    308:          ELSE
                    309: *
                    310: *           2 x 2 diagonal block
                    311: *
                    312: *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
                    313: *           stored in columns K and K+1 of A.
                    314: *
                    315:             IF( K.GT.1 ) THEN
                    316:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    317:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
                    318:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
                    319:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    320: *
                    321:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
                    322:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
                    323:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
                    324:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
                    325:             END IF
                    326: *
                    327: *           Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1)
                    328: *
                    329:             KP = -IPIV( K )
                    330:             IF( KP.NE.K )
                    331:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    332: *
                    333:             KP = -IPIV( K+1 )
                    334:             IF( KP.NE.K+1 )
                    335:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    336: *
                    337:             K = K + 2
                    338:          END IF
                    339: *
                    340:          GO TO 40
                    341:    50    CONTINUE
                    342: *
                    343:       ELSE
                    344: *
                    345: *        Solve A*X = B, where A = L*D*L**H.
                    346: *
                    347: *        First solve L*D*X = B, overwriting B with X.
                    348: *
                    349: *        K is the main loop index, increasing from 1 to N in steps of
                    350: *        1 or 2, depending on the size of the diagonal blocks.
                    351: *
                    352:          K = 1
                    353:    60    CONTINUE
                    354: *
                    355: *        If K > N, exit from loop.
                    356: *
                    357:          IF( K.GT.N )
                    358:      $      GO TO 80
                    359: *
                    360:          IF( IPIV( K ).GT.0 ) THEN
                    361: *
                    362: *           1 x 1 diagonal block
                    363: *
                    364: *           Interchange rows K and IPIV(K).
                    365: *
                    366:             KP = IPIV( K )
                    367:             IF( KP.NE.K )
                    368:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    369: *
                    370: *           Multiply by inv(L(K)), where L(K) is the transformation
                    371: *           stored in column K of A.
                    372: *
                    373:             IF( K.LT.N )
                    374:      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
                    375:      $                     LDB, B( K+1, 1 ), LDB )
                    376: *
                    377: *           Multiply by the inverse of the diagonal block.
                    378: *
                    379:             S = DBLE( ONE ) / DBLE( A( K, K ) )
                    380:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
                    381:             K = K + 1
                    382:          ELSE
                    383: *
                    384: *           2 x 2 diagonal block
                    385: *
                    386: *           Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1)
                    387: *
                    388:             KP = -IPIV( K )
                    389:             IF( KP.NE.K )
                    390:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    391: *
                    392:             KP = -IPIV( K+1 )
                    393:             IF( KP.NE.K+1 )
                    394:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    395: *
                    396: *           Multiply by inv(L(K)), where L(K) is the transformation
                    397: *           stored in columns K and K+1 of A.
                    398: *
                    399:             IF( K.LT.N-1 ) THEN
                    400:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
                    401:      $                     LDB, B( K+2, 1 ), LDB )
                    402:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
                    403:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
                    404:             END IF
                    405: *
                    406: *           Multiply by the inverse of the diagonal block.
                    407: *
                    408:             AKM1K = A( K+1, K )
                    409:             AKM1 = A( K, K ) / DCONJG( AKM1K )
                    410:             AK = A( K+1, K+1 ) / AKM1K
                    411:             DENOM = AKM1*AK - ONE
                    412:             DO 70 J = 1, NRHS
                    413:                BKM1 = B( K, J ) / DCONJG( AKM1K )
                    414:                BK = B( K+1, J ) / AKM1K
                    415:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
                    416:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    417:    70       CONTINUE
                    418:             K = K + 2
                    419:          END IF
                    420: *
                    421:          GO TO 60
                    422:    80    CONTINUE
                    423: *
                    424: *        Next solve L**H *X = B, overwriting B with X.
                    425: *
                    426: *        K is the main loop index, decreasing from N to 1 in steps of
                    427: *        1 or 2, depending on the size of the diagonal blocks.
                    428: *
                    429:          K = N
                    430:    90    CONTINUE
                    431: *
                    432: *        If K < 1, exit from loop.
                    433: *
                    434:          IF( K.LT.1 )
                    435:      $      GO TO 100
                    436: *
                    437:          IF( IPIV( K ).GT.0 ) THEN
                    438: *
                    439: *           1 x 1 diagonal block
                    440: *
                    441: *           Multiply by inv(L**H(K)), where L(K) is the transformation
                    442: *           stored in column K of A.
                    443: *
                    444:             IF( K.LT.N ) THEN
                    445:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    446:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
                    447:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
                    448:      $                     B( K, 1 ), LDB )
                    449:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    450:             END IF
                    451: *
                    452: *           Interchange rows K and IPIV(K).
                    453: *
                    454:             KP = IPIV( K )
                    455:             IF( KP.NE.K )
                    456:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    457:             K = K - 1
                    458:          ELSE
                    459: *
                    460: *           2 x 2 diagonal block
                    461: *
                    462: *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
                    463: *           stored in columns K-1 and K of A.
                    464: *
                    465:             IF( K.LT.N ) THEN
                    466:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    467:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
                    468:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
                    469:      $                     B( K, 1 ), LDB )
                    470:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    471: *
                    472:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
                    473:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
                    474:      $                     B( K+1, 1 ), LDB, A( K+1, K-1 ), 1, ONE,
                    475:      $                     B( K-1, 1 ), LDB )
                    476:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
                    477:             END IF
                    478: *
                    479: *           Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1)
                    480: *
                    481:             KP = -IPIV( K )
                    482:             IF( KP.NE.K )
                    483:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    484: *
                    485:             KP = -IPIV( K-1 )
                    486:             IF( KP.NE.K-1 )
                    487:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    488: *
                    489:             K = K - 2
                    490:          END IF
                    491: *
                    492:          GO TO 90
                    493:   100    CONTINUE
                    494:       END IF
                    495: *
                    496:       RETURN
                    497: *
                    498: *     End of ZHETRS_ROOK
                    499: *
                    500:       END

CVSweb interface <joel.bertrand@systella.fr>