Annotation of rpl/lapack/lapack/zhetrs_rook.f, revision 1.3

1.1       bertrand    1: *> \brief \b ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHETRS_ROOK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_rook.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_rook.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_rook.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LDB, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX            A( LDA, * ), B( LDB, * )
                     30: *       ..
                     31: *
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZHETRS_ROOK solves a system of linear equations A*X = B with a complex
                     39: *> Hermitian matrix A using the factorization A = U*D*U**H or
                     40: *> A = L*D*L**H computed by ZHETRF_ROOK.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] UPLO
                     47: *> \verbatim
                     48: *>          UPLO is CHARACTER*1
                     49: *>          Specifies whether the details of the factorization are stored
                     50: *>          as an upper or lower triangular matrix.
                     51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
                     52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The order of the matrix A.  N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NRHS
                     62: *> \verbatim
                     63: *>          NRHS is INTEGER
                     64: *>          The number of right hand sides, i.e., the number of columns
                     65: *>          of the matrix B.  NRHS >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] A
                     69: *> \verbatim
                     70: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     71: *>          The block diagonal matrix D and the multipliers used to
                     72: *>          obtain the factor U or L as computed by ZHETRF_ROOK.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] IPIV
                     82: *> \verbatim
                     83: *>          IPIV is INTEGER array, dimension (N)
                     84: *>          Details of the interchanges and the block structure of D
                     85: *>          as determined by ZHETRF_ROOK.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                     91: *>          On entry, the right hand side matrix B.
                     92: *>          On exit, the solution matrix X.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDB
                     96: *> \verbatim
                     97: *>          LDB is INTEGER
                     98: *>          The leading dimension of the array B.  LDB >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] INFO
                    102: *> \verbatim
                    103: *>          INFO is INTEGER
                    104: *>          = 0:  successful exit
                    105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    106: *> \endverbatim
                    107: *
                    108: *  Authors:
                    109: *  ========
                    110: *
                    111: *> \author Univ. of Tennessee
                    112: *> \author Univ. of California Berkeley
                    113: *> \author Univ. of Colorado Denver
                    114: *> \author NAG Ltd.
                    115: *
                    116: *> \date November 2013
                    117: *
                    118: *> \ingroup complex16HEcomputational
                    119: *
                    120: *> \par Contributors:
                    121: *  ==================
                    122: *>
                    123: *> \verbatim
                    124: *>
                    125: *>  November 2013,  Igor Kozachenko,
                    126: *>                  Computer Science Division,
                    127: *>                  University of California, Berkeley
                    128: *>
                    129: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    130: *>                  School of Mathematics,
                    131: *>                  University of Manchester
                    132: *>
                    133: *> \endverbatim
                    134: *
                    135: *  =====================================================================
                    136:       SUBROUTINE ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
                    137:      $                        INFO )
                    138: *
                    139: *  -- LAPACK computational routine (version 3.5.0) --
                    140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    142: *     November 2013
                    143: *
                    144: *     .. Scalar Arguments ..
                    145:       CHARACTER          UPLO
                    146:       INTEGER            INFO, LDA, LDB, N, NRHS
                    147: *     ..
                    148: *     .. Array Arguments ..
                    149:       INTEGER            IPIV( * )
                    150:       COMPLEX*16         A( LDA, * ), B( LDB, * )
                    151: *     ..
                    152: *
                    153: *  =====================================================================
                    154: *
                    155: *     .. Parameters ..
                    156:       COMPLEX*16         ONE
                    157:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    158: *     ..
                    159: *     .. Local Scalars ..
                    160:       LOGICAL            UPPER
                    161:       INTEGER            J, K, KP
                    162:       DOUBLE PRECISION   S
                    163:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
                    164: *     ..
                    165: *     .. External Functions ..
                    166:       LOGICAL            LSAME
                    167:       EXTERNAL           LSAME
                    168: *     ..
                    169: *     .. External Subroutines ..
                    170:       EXTERNAL           ZGEMV, ZGERU, ZLACGV, ZDSCAL, ZSWAP, XERBLA
                    171: *     ..
                    172: *     .. Intrinsic Functions ..
                    173:       INTRINSIC          DCONJG, MAX, DBLE
                    174: *     ..
                    175: *     .. Executable Statements ..
                    176: *
                    177:       INFO = 0
                    178:       UPPER = LSAME( UPLO, 'U' )
                    179:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    180:          INFO = -1
                    181:       ELSE IF( N.LT.0 ) THEN
                    182:          INFO = -2
                    183:       ELSE IF( NRHS.LT.0 ) THEN
                    184:          INFO = -3
                    185:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    186:          INFO = -5
                    187:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    188:          INFO = -8
                    189:       END IF
                    190:       IF( INFO.NE.0 ) THEN
                    191:          CALL XERBLA( 'ZHETRS_ROOK', -INFO )
                    192:          RETURN
                    193:       END IF
                    194: *
                    195: *     Quick return if possible
                    196: *
                    197:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
                    198:      $   RETURN
                    199: *
                    200:       IF( UPPER ) THEN
                    201: *
                    202: *        Solve A*X = B, where A = U*D*U**H.
                    203: *
                    204: *        First solve U*D*X = B, overwriting B with X.
                    205: *
                    206: *        K is the main loop index, decreasing from N to 1 in steps of
                    207: *        1 or 2, depending on the size of the diagonal blocks.
                    208: *
                    209:          K = N
                    210:    10    CONTINUE
                    211: *
                    212: *        If K < 1, exit from loop.
                    213: *
                    214:          IF( K.LT.1 )
                    215:      $      GO TO 30
                    216: *
                    217:          IF( IPIV( K ).GT.0 ) THEN
                    218: *
                    219: *           1 x 1 diagonal block
                    220: *
                    221: *           Interchange rows K and IPIV(K).
                    222: *
                    223:             KP = IPIV( K )
                    224:             IF( KP.NE.K )
                    225:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    226: *
                    227: *           Multiply by inv(U(K)), where U(K) is the transformation
                    228: *           stored in column K of A.
                    229: *
                    230:             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    231:      $                  B( 1, 1 ), LDB )
                    232: *
                    233: *           Multiply by the inverse of the diagonal block.
                    234: *
                    235:             S = DBLE( ONE ) / DBLE( A( K, K ) )
                    236:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
                    237:             K = K - 1
                    238:          ELSE
                    239: *
                    240: *           2 x 2 diagonal block
                    241: *
                    242: *           Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1)
                    243: *
                    244:             KP = -IPIV( K )
                    245:             IF( KP.NE.K )
                    246:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    247: *
                    248:             KP = -IPIV( K-1)
                    249:             IF( KP.NE.K-1 )
                    250:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    251: *
                    252: *           Multiply by inv(U(K)), where U(K) is the transformation
                    253: *           stored in columns K-1 and K of A.
                    254: *
                    255:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    256:      $                  B( 1, 1 ), LDB )
                    257:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
                    258:      $                  LDB, B( 1, 1 ), LDB )
                    259: *
                    260: *           Multiply by the inverse of the diagonal block.
                    261: *
                    262:             AKM1K = A( K-1, K )
                    263:             AKM1 = A( K-1, K-1 ) / AKM1K
                    264:             AK = A( K, K ) / DCONJG( AKM1K )
                    265:             DENOM = AKM1*AK - ONE
                    266:             DO 20 J = 1, NRHS
                    267:                BKM1 = B( K-1, J ) / AKM1K
                    268:                BK = B( K, J ) / DCONJG( AKM1K )
                    269:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
                    270:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    271:    20       CONTINUE
                    272:             K = K - 2
                    273:          END IF
                    274: *
                    275:          GO TO 10
                    276:    30    CONTINUE
                    277: *
                    278: *        Next solve U**H *X = B, overwriting B with X.
                    279: *
                    280: *        K is the main loop index, increasing from 1 to N in steps of
                    281: *        1 or 2, depending on the size of the diagonal blocks.
                    282: *
                    283:          K = 1
                    284:    40    CONTINUE
                    285: *
                    286: *        If K > N, exit from loop.
                    287: *
                    288:          IF( K.GT.N )
                    289:      $      GO TO 50
                    290: *
                    291:          IF( IPIV( K ).GT.0 ) THEN
                    292: *
                    293: *           1 x 1 diagonal block
                    294: *
                    295: *           Multiply by inv(U**H(K)), where U(K) is the transformation
                    296: *           stored in column K of A.
                    297: *
                    298:             IF( K.GT.1 ) THEN
                    299:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    300:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
                    301:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
                    302:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    303:             END IF
                    304: *
                    305: *           Interchange rows K and IPIV(K).
                    306: *
                    307:             KP = IPIV( K )
                    308:             IF( KP.NE.K )
                    309:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    310:             K = K + 1
                    311:          ELSE
                    312: *
                    313: *           2 x 2 diagonal block
                    314: *
                    315: *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
                    316: *           stored in columns K and K+1 of A.
                    317: *
                    318:             IF( K.GT.1 ) THEN
                    319:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    320:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
                    321:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
                    322:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    323: *
                    324:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
                    325:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
                    326:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
                    327:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
                    328:             END IF
                    329: *
                    330: *           Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1)
                    331: *
                    332:             KP = -IPIV( K )
                    333:             IF( KP.NE.K )
                    334:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    335: *
                    336:             KP = -IPIV( K+1 )
                    337:             IF( KP.NE.K+1 )
                    338:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    339: *
                    340:             K = K + 2
                    341:          END IF
                    342: *
                    343:          GO TO 40
                    344:    50    CONTINUE
                    345: *
                    346:       ELSE
                    347: *
                    348: *        Solve A*X = B, where A = L*D*L**H.
                    349: *
                    350: *        First solve L*D*X = B, overwriting B with X.
                    351: *
                    352: *        K is the main loop index, increasing from 1 to N in steps of
                    353: *        1 or 2, depending on the size of the diagonal blocks.
                    354: *
                    355:          K = 1
                    356:    60    CONTINUE
                    357: *
                    358: *        If K > N, exit from loop.
                    359: *
                    360:          IF( K.GT.N )
                    361:      $      GO TO 80
                    362: *
                    363:          IF( IPIV( K ).GT.0 ) THEN
                    364: *
                    365: *           1 x 1 diagonal block
                    366: *
                    367: *           Interchange rows K and IPIV(K).
                    368: *
                    369:             KP = IPIV( K )
                    370:             IF( KP.NE.K )
                    371:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    372: *
                    373: *           Multiply by inv(L(K)), where L(K) is the transformation
                    374: *           stored in column K of A.
                    375: *
                    376:             IF( K.LT.N )
                    377:      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
                    378:      $                     LDB, B( K+1, 1 ), LDB )
                    379: *
                    380: *           Multiply by the inverse of the diagonal block.
                    381: *
                    382:             S = DBLE( ONE ) / DBLE( A( K, K ) )
                    383:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
                    384:             K = K + 1
                    385:          ELSE
                    386: *
                    387: *           2 x 2 diagonal block
                    388: *
                    389: *           Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1)
                    390: *
                    391:             KP = -IPIV( K )
                    392:             IF( KP.NE.K )
                    393:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    394: *
                    395:             KP = -IPIV( K+1 )
                    396:             IF( KP.NE.K+1 )
                    397:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    398: *
                    399: *           Multiply by inv(L(K)), where L(K) is the transformation
                    400: *           stored in columns K and K+1 of A.
                    401: *
                    402:             IF( K.LT.N-1 ) THEN
                    403:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
                    404:      $                     LDB, B( K+2, 1 ), LDB )
                    405:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
                    406:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
                    407:             END IF
                    408: *
                    409: *           Multiply by the inverse of the diagonal block.
                    410: *
                    411:             AKM1K = A( K+1, K )
                    412:             AKM1 = A( K, K ) / DCONJG( AKM1K )
                    413:             AK = A( K+1, K+1 ) / AKM1K
                    414:             DENOM = AKM1*AK - ONE
                    415:             DO 70 J = 1, NRHS
                    416:                BKM1 = B( K, J ) / DCONJG( AKM1K )
                    417:                BK = B( K+1, J ) / AKM1K
                    418:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
                    419:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    420:    70       CONTINUE
                    421:             K = K + 2
                    422:          END IF
                    423: *
                    424:          GO TO 60
                    425:    80    CONTINUE
                    426: *
                    427: *        Next solve L**H *X = B, overwriting B with X.
                    428: *
                    429: *        K is the main loop index, decreasing from N to 1 in steps of
                    430: *        1 or 2, depending on the size of the diagonal blocks.
                    431: *
                    432:          K = N
                    433:    90    CONTINUE
                    434: *
                    435: *        If K < 1, exit from loop.
                    436: *
                    437:          IF( K.LT.1 )
                    438:      $      GO TO 100
                    439: *
                    440:          IF( IPIV( K ).GT.0 ) THEN
                    441: *
                    442: *           1 x 1 diagonal block
                    443: *
                    444: *           Multiply by inv(L**H(K)), where L(K) is the transformation
                    445: *           stored in column K of A.
                    446: *
                    447:             IF( K.LT.N ) THEN
                    448:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    449:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
                    450:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
                    451:      $                     B( K, 1 ), LDB )
                    452:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    453:             END IF
                    454: *
                    455: *           Interchange rows K and IPIV(K).
                    456: *
                    457:             KP = IPIV( K )
                    458:             IF( KP.NE.K )
                    459:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    460:             K = K - 1
                    461:          ELSE
                    462: *
                    463: *           2 x 2 diagonal block
                    464: *
                    465: *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
                    466: *           stored in columns K-1 and K of A.
                    467: *
                    468:             IF( K.LT.N ) THEN
                    469:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    470:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
                    471:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
                    472:      $                     B( K, 1 ), LDB )
                    473:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
                    474: *
                    475:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
                    476:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
                    477:      $                     B( K+1, 1 ), LDB, A( K+1, K-1 ), 1, ONE,
                    478:      $                     B( K-1, 1 ), LDB )
                    479:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
                    480:             END IF
                    481: *
                    482: *           Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1)
                    483: *
                    484:             KP = -IPIV( K )
                    485:             IF( KP.NE.K )
                    486:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    487: *
                    488:             KP = -IPIV( K-1 )
                    489:             IF( KP.NE.K-1 )
                    490:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    491: *
                    492:             K = K - 2
                    493:          END IF
                    494: *
                    495:          GO TO 90
                    496:   100    CONTINUE
                    497:       END IF
                    498: *
                    499:       RETURN
                    500: *
                    501: *     End of ZHETRS_ROOK
                    502: *
                    503:       END

CVSweb interface <joel.bertrand@systella.fr>