File:  [local] / rpl / lapack / lapack / zhetrs_3.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:25 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHETRS_3
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRS_3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
   22: *                            INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDA, LDB, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), E( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *> ZHETRS_3 solves a system of linear equations A * X = B with a complex
   39: *> Hermitian matrix A using the factorization computed
   40: *> by ZHETRF_RK or ZHETRF_BK:
   41: *>
   42: *>    A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
   43: *>
   44: *> where U (or L) is unit upper (or lower) triangular matrix,
   45: *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
   46: *> matrix, P**T is the transpose of P, and D is Hermitian and block
   47: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   48: *>
   49: *> This algorithm is using Level 3 BLAS.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] UPLO
   56: *> \verbatim
   57: *>          UPLO is CHARACTER*1
   58: *>          Specifies whether the details of the factorization are
   59: *>          stored as an upper or lower triangular matrix:
   60: *>          = 'U':  Upper triangular, form is A = P*U*D*(U**H)*(P**T);
   61: *>          = 'L':  Lower triangular, form is A = P*L*D*(L**H)*(P**T).
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The order of the matrix A.  N >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] NRHS
   71: *> \verbatim
   72: *>          NRHS is INTEGER
   73: *>          The number of right hand sides, i.e., the number of columns
   74: *>          of the matrix B.  NRHS >= 0.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] A
   78: *> \verbatim
   79: *>          A is COMPLEX*16 array, dimension (LDA,N)
   80: *>          Diagonal of the block diagonal matrix D and factors U or L
   81: *>          as computed by ZHETRF_RK and ZHETRF_BK:
   82: *>            a) ONLY diagonal elements of the Hermitian block diagonal
   83: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
   84: *>               (superdiagonal (or subdiagonal) elements of D
   85: *>                should be provided on entry in array E), and
   86: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
   87: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDA
   91: *> \verbatim
   92: *>          LDA is INTEGER
   93: *>          The leading dimension of the array A.  LDA >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[in] E
   97: *> \verbatim
   98: *>          E is COMPLEX*16 array, dimension (N)
   99: *>          On entry, contains the superdiagonal (or subdiagonal)
  100: *>          elements of the Hermitian block diagonal matrix D
  101: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  102: *>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
  103: *>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
  104: *>
  105: *>          NOTE: For 1-by-1 diagonal block D(k), where
  106: *>          1 <= k <= N, the element E(k) is not referenced in both
  107: *>          UPLO = 'U' or UPLO = 'L' cases.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] IPIV
  111: *> \verbatim
  112: *>          IPIV is INTEGER array, dimension (N)
  113: *>          Details of the interchanges and the block structure of D
  114: *>          as determined by ZHETRF_RK or ZHETRF_BK.
  115: *> \endverbatim
  116: *>
  117: *> \param[in,out] B
  118: *> \verbatim
  119: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  120: *>          On entry, the right hand side matrix B.
  121: *>          On exit, the solution matrix X.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDB
  125: *> \verbatim
  126: *>          LDB is INTEGER
  127: *>          The leading dimension of the array B.  LDB >= max(1,N).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] INFO
  131: *> \verbatim
  132: *>          INFO is INTEGER
  133: *>          = 0:  successful exit
  134: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  135: *> \endverbatim
  136: *
  137: *  Authors:
  138: *  ========
  139: *
  140: *> \author Univ. of Tennessee
  141: *> \author Univ. of California Berkeley
  142: *> \author Univ. of Colorado Denver
  143: *> \author NAG Ltd.
  144: *
  145: *> \ingroup complex16HEcomputational
  146: *
  147: *> \par Contributors:
  148: *  ==================
  149: *>
  150: *> \verbatim
  151: *>
  152: *>  June 2017,  Igor Kozachenko,
  153: *>                  Computer Science Division,
  154: *>                  University of California, Berkeley
  155: *>
  156: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  157: *>                  School of Mathematics,
  158: *>                  University of Manchester
  159: *>
  160: *> \endverbatim
  161: *
  162: *  =====================================================================
  163:       SUBROUTINE ZHETRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
  164:      $                     INFO )
  165: *
  166: *  -- LAPACK computational routine --
  167: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  168: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169: *
  170: *     .. Scalar Arguments ..
  171:       CHARACTER          UPLO
  172:       INTEGER            INFO, LDA, LDB, N, NRHS
  173: *     ..
  174: *     .. Array Arguments ..
  175:       INTEGER            IPIV( * )
  176:       COMPLEX*16         A( LDA, * ), B( LDB, * ), E( * )
  177: *     ..
  178: *
  179: *  =====================================================================
  180: *
  181: *     .. Parameters ..
  182:       COMPLEX*16         ONE
  183:       PARAMETER          ( ONE = ( 1.0D+0,0.0D+0 ) )
  184: *     ..
  185: *     .. Local Scalars ..
  186:       LOGICAL            UPPER
  187:       INTEGER            I, J, K, KP
  188:       DOUBLE PRECISION   S
  189:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  190: *     ..
  191: *     .. External Functions ..
  192:       LOGICAL            LSAME
  193:       EXTERNAL           LSAME
  194: *     ..
  195: *     .. External Subroutines ..
  196:       EXTERNAL           ZDSCAL, ZSWAP, ZTRSM, XERBLA
  197: *     ..
  198: *     .. Intrinsic Functions ..
  199:       INTRINSIC          ABS, DBLE, DCONJG, MAX
  200: *     ..
  201: *     .. Executable Statements ..
  202: *
  203:       INFO = 0
  204:       UPPER = LSAME( UPLO, 'U' )
  205:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  206:          INFO = -1
  207:       ELSE IF( N.LT.0 ) THEN
  208:          INFO = -2
  209:       ELSE IF( NRHS.LT.0 ) THEN
  210:          INFO = -3
  211:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  212:          INFO = -5
  213:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  214:          INFO = -9
  215:       END IF
  216:       IF( INFO.NE.0 ) THEN
  217:          CALL XERBLA( 'ZHETRS_3', -INFO )
  218:          RETURN
  219:       END IF
  220: *
  221: *     Quick return if possible
  222: *
  223:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  224:      $   RETURN
  225: *
  226:       IF( UPPER ) THEN
  227: *
  228: *        Begin Upper
  229: *
  230: *        Solve A*X = B, where A = U*D*U**H.
  231: *
  232: *        P**T * B
  233: *
  234: *        Interchange rows K and IPIV(K) of matrix B in the same order
  235: *        that the formation order of IPIV(I) vector for Upper case.
  236: *
  237: *        (We can do the simple loop over IPIV with decrement -1,
  238: *        since the ABS value of IPIV(I) represents the row index
  239: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
  240: *
  241:          DO K = N, 1, -1
  242:             KP = ABS( IPIV( K ) )
  243:             IF( KP.NE.K ) THEN
  244:                CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  245:             END IF
  246:          END DO
  247: *
  248: *        Compute (U \P**T * B) -> B    [ (U \P**T * B) ]
  249: *
  250:          CALL ZTRSM( 'L', 'U', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  251: *
  252: *        Compute D \ B -> B   [ D \ (U \P**T * B) ]
  253: *
  254:          I = N
  255:          DO WHILE ( I.GE.1 )
  256:             IF( IPIV( I ).GT.0 ) THEN
  257:                S = DBLE( ONE ) / DBLE( A( I, I ) )
  258:                CALL ZDSCAL( NRHS, S, B( I, 1 ), LDB )
  259:             ELSE IF ( I.GT.1 ) THEN
  260:                AKM1K = E( I )
  261:                AKM1 = A( I-1, I-1 ) / AKM1K
  262:                AK = A( I, I ) / DCONJG( AKM1K )
  263:                DENOM = AKM1*AK - ONE
  264:                DO J = 1, NRHS
  265:                   BKM1 = B( I-1, J ) / AKM1K
  266:                   BK = B( I, J ) / DCONJG( AKM1K )
  267:                   B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
  268:                   B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
  269:                END DO
  270:                I = I - 1
  271:             END IF
  272:             I = I - 1
  273:          END DO
  274: *
  275: *        Compute (U**H \ B) -> B   [ U**H \ (D \ (U \P**T * B) ) ]
  276: *
  277:          CALL ZTRSM( 'L', 'U', 'C', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  278: *
  279: *        P * B  [ P * (U**H \ (D \ (U \P**T * B) )) ]
  280: *
  281: *        Interchange rows K and IPIV(K) of matrix B in reverse order
  282: *        from the formation order of IPIV(I) vector for Upper case.
  283: *
  284: *        (We can do the simple loop over IPIV with increment 1,
  285: *        since the ABS value of IPIV(I) represents the row index
  286: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
  287: *
  288:          DO K = 1, N, 1
  289:             KP = ABS( IPIV( K ) )
  290:             IF( KP.NE.K ) THEN
  291:                CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  292:             END IF
  293:          END DO
  294: *
  295:       ELSE
  296: *
  297: *        Begin Lower
  298: *
  299: *        Solve A*X = B, where A = L*D*L**H.
  300: *
  301: *        P**T * B
  302: *        Interchange rows K and IPIV(K) of matrix B in the same order
  303: *        that the formation order of IPIV(I) vector for Lower case.
  304: *
  305: *        (We can do the simple loop over IPIV with increment 1,
  306: *        since the ABS value of IPIV(I) represents the row index
  307: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
  308: *
  309:          DO K = 1, N, 1
  310:             KP = ABS( IPIV( K ) )
  311:             IF( KP.NE.K ) THEN
  312:                CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  313:             END IF
  314:          END DO
  315: *
  316: *        Compute (L \P**T * B) -> B    [ (L \P**T * B) ]
  317: *
  318:          CALL ZTRSM( 'L', 'L', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  319: *
  320: *        Compute D \ B -> B   [ D \ (L \P**T * B) ]
  321: *
  322:          I = 1
  323:          DO WHILE ( I.LE.N )
  324:             IF( IPIV( I ).GT.0 ) THEN
  325:                S = DBLE( ONE ) / DBLE( A( I, I ) )
  326:                CALL ZDSCAL( NRHS, S, B( I, 1 ), LDB )
  327:             ELSE IF( I.LT.N ) THEN
  328:                AKM1K = E( I )
  329:                AKM1 = A( I, I ) / DCONJG( AKM1K )
  330:                AK = A( I+1, I+1 ) / AKM1K
  331:                DENOM = AKM1*AK - ONE
  332:                DO  J = 1, NRHS
  333:                   BKM1 = B( I, J ) / DCONJG( AKM1K )
  334:                   BK = B( I+1, J ) / AKM1K
  335:                   B( I, J ) = ( AK*BKM1-BK ) / DENOM
  336:                   B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  337:                END DO
  338:                I = I + 1
  339:             END IF
  340:             I = I + 1
  341:          END DO
  342: *
  343: *        Compute (L**H \ B) -> B   [ L**H \ (D \ (L \P**T * B) ) ]
  344: *
  345:          CALL ZTRSM('L', 'L', 'C', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  346: *
  347: *        P * B  [ P * (L**H \ (D \ (L \P**T * B) )) ]
  348: *
  349: *        Interchange rows K and IPIV(K) of matrix B in reverse order
  350: *        from the formation order of IPIV(I) vector for Lower case.
  351: *
  352: *        (We can do the simple loop over IPIV with decrement -1,
  353: *        since the ABS value of IPIV(I) represents the row index
  354: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
  355: *
  356:          DO K = N, 1, -1
  357:             KP = ABS( IPIV( K ) )
  358:             IF( KP.NE.K ) THEN
  359:                CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  360:             END IF
  361:          END DO
  362: *
  363: *        END Lower
  364: *
  365:       END IF
  366: *
  367:       RETURN
  368: *
  369: *     End of ZHETRS_3
  370: *
  371:       END

CVSweb interface <joel.bertrand@systella.fr>