File:  [local] / rpl / lapack / lapack / zhetrs2.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:33 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZHETRS2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRS2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, 
   22: *                           WORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDA, LDB, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       COMPLEX*16       A( LDA, * ), B( LDB, * ), WORK( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZHETRS2 solves a system of linear equations A*X = B with a complex
   40: *> Hermitian matrix A using the factorization A = U*D*U**H or
   41: *> A = L*D*L**H computed by ZHETRF and converted by ZSYCONV.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] UPLO
   48: *> \verbatim
   49: *>          UPLO is CHARACTER*1
   50: *>          Specifies whether the details of the factorization are stored
   51: *>          as an upper or lower triangular matrix.
   52: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   53: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrix B.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] A
   70: *> \verbatim
   71: *>          A is COMPLEX*16 array, dimension (LDA,N)
   72: *>          The block diagonal matrix D and the multipliers used to
   73: *>          obtain the factor U or L as computed by ZHETRF.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] LDA
   77: *> \verbatim
   78: *>          LDA is INTEGER
   79: *>          The leading dimension of the array A.  LDA >= max(1,N).
   80: *> \endverbatim
   81: *>
   82: *> \param[in] IPIV
   83: *> \verbatim
   84: *>          IPIV is INTEGER array, dimension (N)
   85: *>          Details of the interchanges and the block structure of D
   86: *>          as determined by ZHETRF.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] B
   90: *> \verbatim
   91: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   92: *>          On entry, the right hand side matrix B.
   93: *>          On exit, the solution matrix X.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDB
   97: *> \verbatim
   98: *>          LDB is INTEGER
   99: *>          The leading dimension of the array B.  LDB >= max(1,N).
  100: *> \endverbatim
  101: *>
  102: *> \param[out] WORK
  103: *> \verbatim
  104: *>          WORK is REAL array, dimension (N)
  105: *> \endverbatim
  106: *>
  107: *> \param[out] INFO
  108: *> \verbatim
  109: *>          INFO is INTEGER
  110: *>          = 0:  successful exit
  111: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  112: *> \endverbatim
  113: *
  114: *  Authors:
  115: *  ========
  116: *
  117: *> \author Univ. of Tennessee 
  118: *> \author Univ. of California Berkeley 
  119: *> \author Univ. of Colorado Denver 
  120: *> \author NAG Ltd. 
  121: *
  122: *> \date November 2011
  123: *
  124: *> \ingroup complex16HEcomputational
  125: *
  126: *  =====================================================================
  127:       SUBROUTINE ZHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, 
  128:      $                    WORK, INFO )
  129: *
  130: *  -- LAPACK computational routine (version 3.4.0) --
  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133: *     November 2011
  134: *
  135: *     .. Scalar Arguments ..
  136:       CHARACTER          UPLO
  137:       INTEGER            INFO, LDA, LDB, N, NRHS
  138: *     ..
  139: *     .. Array Arguments ..
  140:       INTEGER            IPIV( * )
  141:       COMPLEX*16       A( LDA, * ), B( LDB, * ), WORK( * )
  142: *     ..
  143: *
  144: *  =====================================================================
  145: *
  146: *     .. Parameters ..
  147:       COMPLEX*16         ONE
  148:       PARAMETER          ( ONE = (1.0D+0,0.0D+0) )
  149: *     ..
  150: *     .. Local Scalars ..
  151:       LOGICAL            UPPER
  152:       INTEGER            I, IINFO, J, K, KP
  153:       DOUBLE PRECISION   S
  154:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  155: *     ..
  156: *     .. External Functions ..
  157:       LOGICAL            LSAME
  158:       EXTERNAL           LSAME
  159: *     ..
  160: *     .. External Subroutines ..
  161:       EXTERNAL           ZLACGV, ZSCAL, ZSYCONV, ZSWAP, ZTRSM, XERBLA
  162: *     ..
  163: *     .. Intrinsic Functions ..
  164:       INTRINSIC          DBLE, DCONJG, MAX
  165: *     ..
  166: *     .. Executable Statements ..
  167: *
  168:       INFO = 0
  169:       UPPER = LSAME( UPLO, 'U' )
  170:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  171:          INFO = -1
  172:       ELSE IF( N.LT.0 ) THEN
  173:          INFO = -2
  174:       ELSE IF( NRHS.LT.0 ) THEN
  175:          INFO = -3
  176:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  177:          INFO = -5
  178:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  179:          INFO = -8
  180:       END IF
  181:       IF( INFO.NE.0 ) THEN
  182:          CALL XERBLA( 'ZHETRS2', -INFO )
  183:          RETURN
  184:       END IF
  185: *
  186: *     Quick return if possible
  187: *
  188:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  189:      $   RETURN
  190: *
  191: *     Convert A
  192: *
  193:       CALL ZSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
  194: *
  195:       IF( UPPER ) THEN
  196: *
  197: *        Solve A*X = B, where A = U*D*U**H.
  198: *
  199: *       P**T * B  
  200:         K=N
  201:         DO WHILE ( K .GE. 1 )
  202:          IF( IPIV( K ).GT.0 ) THEN
  203: *           1 x 1 diagonal block
  204: *           Interchange rows K and IPIV(K).
  205:             KP = IPIV( K )
  206:             IF( KP.NE.K )
  207:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  208:             K=K-1
  209:          ELSE
  210: *           2 x 2 diagonal block
  211: *           Interchange rows K-1 and -IPIV(K).
  212:             KP = -IPIV( K )
  213:             IF( KP.EQ.-IPIV( K-1 ) )
  214:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  215:             K=K-2
  216:          END IF
  217:         END DO
  218: *
  219: *  Compute (U \P**T * B) -> B    [ (U \P**T * B) ]
  220: *
  221:         CALL ZTRSM('L','U','N','U',N,NRHS,ONE,A,LDA,B,LDB)
  222: *
  223: *  Compute D \ B -> B   [ D \ (U \P**T * B) ]
  224: *       
  225:          I=N
  226:          DO WHILE ( I .GE. 1 )
  227:             IF( IPIV(I) .GT. 0 ) THEN
  228:               S = DBLE( ONE ) / DBLE( A( I, I ) )
  229:               CALL ZDSCAL( NRHS, S, B( I, 1 ), LDB )
  230:             ELSEIF ( I .GT. 1) THEN
  231:                IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
  232:                   AKM1K = WORK(I)
  233:                   AKM1 = A( I-1, I-1 ) / AKM1K
  234:                   AK = A( I, I ) / DCONJG( AKM1K )
  235:                   DENOM = AKM1*AK - ONE
  236:                   DO 15 J = 1, NRHS
  237:                      BKM1 = B( I-1, J ) / AKM1K
  238:                      BK = B( I, J ) / DCONJG( AKM1K )
  239:                      B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
  240:                      B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
  241:  15              CONTINUE
  242:                I = I - 1
  243:                ENDIF
  244:             ENDIF
  245:             I = I - 1
  246:          END DO
  247: *
  248: *      Compute (U**H \ B) -> B   [ U**H \ (D \ (U \P**T * B) ) ]
  249: *
  250:          CALL ZTRSM('L','U','C','U',N,NRHS,ONE,A,LDA,B,LDB)
  251: *
  252: *       P * B  [ P * (U**H \ (D \ (U \P**T * B) )) ]
  253: *
  254:         K=1
  255:         DO WHILE ( K .LE. N )
  256:          IF( IPIV( K ).GT.0 ) THEN
  257: *           1 x 1 diagonal block
  258: *           Interchange rows K and IPIV(K).
  259:             KP = IPIV( K )
  260:             IF( KP.NE.K )
  261:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  262:             K=K+1
  263:          ELSE
  264: *           2 x 2 diagonal block
  265: *           Interchange rows K-1 and -IPIV(K).
  266:             KP = -IPIV( K )
  267:             IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
  268:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  269:             K=K+2
  270:          ENDIF
  271:         END DO
  272: *
  273:       ELSE
  274: *
  275: *        Solve A*X = B, where A = L*D*L**H.
  276: *
  277: *       P**T * B  
  278:         K=1
  279:         DO WHILE ( K .LE. N )
  280:          IF( IPIV( K ).GT.0 ) THEN
  281: *           1 x 1 diagonal block
  282: *           Interchange rows K and IPIV(K).
  283:             KP = IPIV( K )
  284:             IF( KP.NE.K )
  285:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  286:             K=K+1
  287:          ELSE
  288: *           2 x 2 diagonal block
  289: *           Interchange rows K and -IPIV(K+1).
  290:             KP = -IPIV( K+1 )
  291:             IF( KP.EQ.-IPIV( K ) )
  292:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  293:             K=K+2
  294:          ENDIF
  295:         END DO
  296: *
  297: *  Compute (L \P**T * B) -> B    [ (L \P**T * B) ]
  298: *
  299:         CALL ZTRSM('L','L','N','U',N,NRHS,ONE,A,LDA,B,LDB)
  300: *
  301: *  Compute D \ B -> B   [ D \ (L \P**T * B) ]
  302: *       
  303:          I=1
  304:          DO WHILE ( I .LE. N )
  305:             IF( IPIV(I) .GT. 0 ) THEN
  306:               S = DBLE( ONE ) / DBLE( A( I, I ) )
  307:               CALL ZDSCAL( NRHS, S, B( I, 1 ), LDB )
  308:             ELSE
  309:                   AKM1K = WORK(I)
  310:                   AKM1 = A( I, I ) / DCONJG( AKM1K )
  311:                   AK = A( I+1, I+1 ) / AKM1K
  312:                   DENOM = AKM1*AK - ONE
  313:                   DO 25 J = 1, NRHS
  314:                      BKM1 = B( I, J ) / DCONJG( AKM1K )
  315:                      BK = B( I+1, J ) / AKM1K
  316:                      B( I, J ) = ( AK*BKM1-BK ) / DENOM
  317:                      B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  318:  25              CONTINUE
  319:                   I = I + 1
  320:             ENDIF
  321:             I = I + 1
  322:          END DO
  323: *
  324: *  Compute (L**H \ B) -> B   [ L**H \ (D \ (L \P**T * B) ) ]
  325:   326:         CALL ZTRSM('L','L','C','U',N,NRHS,ONE,A,LDA,B,LDB)
  327: *
  328: *       P * B  [ P * (L**H \ (D \ (L \P**T * B) )) ]
  329: *
  330:         K=N
  331:         DO WHILE ( K .GE. 1 )
  332:          IF( IPIV( K ).GT.0 ) THEN
  333: *           1 x 1 diagonal block
  334: *           Interchange rows K and IPIV(K).
  335:             KP = IPIV( K )
  336:             IF( KP.NE.K )
  337:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  338:             K=K-1
  339:          ELSE
  340: *           2 x 2 diagonal block
  341: *           Interchange rows K-1 and -IPIV(K).
  342:             KP = -IPIV( K )
  343:             IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
  344:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  345:             K=K-2
  346:          ENDIF
  347:         END DO
  348: *
  349:       END IF
  350: *
  351: *     Revert A
  352: *
  353:       CALL ZSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
  354: *
  355:       RETURN
  356: *
  357: *     End of ZHETRS2
  358: *
  359:       END

CVSweb interface <joel.bertrand@systella.fr>