File:  [local] / rpl / lapack / lapack / zhetrs2.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:47 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE ZHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, 
    2:      $                    WORK, INFO )
    3: *
    4: *  -- LAPACK PROTOTYPE routine (version 3.3.0) --
    5: *
    6: *  -- Written by Julie Langou of the Univ. of TN    --
    7: *     November 2010
    8: *
    9: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   10: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   11: *
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          UPLO
   14:       INTEGER            INFO, LDA, LDB, N, NRHS
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IPIV( * )
   18:       DOUBLE COMPLEX   A( LDA, * ), B( LDB, * ), WORK( * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZHETRS2 solves a system of linear equations A*X = B with a real
   25: *  Hermitian matrix A using the factorization A = U*D*U**T or
   26: *  A = L*D*L**T computed by ZSYTRF and converted by ZSYCONV.
   27: *
   28: *  Arguments
   29: *  =========
   30: *
   31: *  UPLO    (input) CHARACTER*1
   32: *          Specifies whether the details of the factorization are stored
   33: *          as an upper or lower triangular matrix.
   34: *          = 'U':  Upper triangular, form is A = U*D*U**H;
   35: *          = 'L':  Lower triangular, form is A = L*D*L**H.
   36: *
   37: *  N       (input) INTEGER
   38: *          The order of the matrix A.  N >= 0.
   39: *
   40: *  NRHS    (input) INTEGER
   41: *          The number of right hand sides, i.e., the number of columns
   42: *          of the matrix B.  NRHS >= 0.
   43: *
   44: *  A       (input) DOUBLE COMPLEX array, dimension (LDA,N)
   45: *          The block diagonal matrix D and the multipliers used to
   46: *          obtain the factor U or L as computed by ZHETRF.
   47: *
   48: *  LDA     (input) INTEGER
   49: *          The leading dimension of the array A.  LDA >= max(1,N).
   50: *
   51: *  IPIV    (input) INTEGER array, dimension (N)
   52: *          Details of the interchanges and the block structure of D
   53: *          as determined by ZHETRF.
   54: *
   55: *  B       (input/output) DOUBLE COMPLEX array, dimension (LDB,NRHS)
   56: *          On entry, the right hand side matrix B.
   57: *          On exit, the solution matrix X.
   58: *
   59: *  LDB     (input) INTEGER
   60: *          The leading dimension of the array B.  LDB >= max(1,N).
   61: *
   62: *  WORK    (workspace) REAL array, dimension (N)
   63: *
   64: *  INFO    (output) INTEGER
   65: *          = 0:  successful exit
   66: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   67: *
   68: *  =====================================================================
   69: *
   70: *     .. Parameters ..
   71:       DOUBLE COMPLEX     ONE
   72:       PARAMETER          ( ONE = (1.0D+0,0.0D+0) )
   73: *     ..
   74: *     .. Local Scalars ..
   75:       LOGICAL            UPPER
   76:       INTEGER            I, IINFO, J, K, KP
   77:       DOUBLE PRECISION   S
   78:       DOUBLE COMPLEX     AK, AKM1, AKM1K, BK, BKM1, DENOM
   79: *     ..
   80: *     .. External Functions ..
   81:       LOGICAL            LSAME
   82:       EXTERNAL           LSAME
   83: *     ..
   84: *     .. External Subroutines ..
   85:       EXTERNAL           ZLACGV, ZSCAL, ZSYCONV, ZSWAP, ZTRSM, XERBLA
   86: *     ..
   87: *     .. Intrinsic Functions ..
   88:       INTRINSIC          DBLE, DCONJG, MAX
   89: *     ..
   90: *     .. Executable Statements ..
   91: *
   92:       INFO = 0
   93:       UPPER = LSAME( UPLO, 'U' )
   94:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   95:          INFO = -1
   96:       ELSE IF( N.LT.0 ) THEN
   97:          INFO = -2
   98:       ELSE IF( NRHS.LT.0 ) THEN
   99:          INFO = -3
  100:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  101:          INFO = -5
  102:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  103:          INFO = -8
  104:       END IF
  105:       IF( INFO.NE.0 ) THEN
  106:          CALL XERBLA( 'ZHETRS2', -INFO )
  107:          RETURN
  108:       END IF
  109: *
  110: *     Quick return if possible
  111: *
  112:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  113:      $   RETURN
  114: *
  115: *     Convert A
  116: *
  117:       CALL ZSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
  118: *
  119:       IF( UPPER ) THEN
  120: *
  121: *        Solve A*X = B, where A = U*D*U'.
  122: *
  123: *       P' * B  
  124:         K=N
  125:         DO WHILE ( K .GE. 1 )
  126:          IF( IPIV( K ).GT.0 ) THEN
  127: *           1 x 1 diagonal block
  128: *           Interchange rows K and IPIV(K).
  129:             KP = IPIV( K )
  130:             IF( KP.NE.K )
  131:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  132:             K=K-1
  133:          ELSE
  134: *           2 x 2 diagonal block
  135: *           Interchange rows K-1 and -IPIV(K).
  136:             KP = -IPIV( K )
  137:             IF( KP.EQ.-IPIV( K-1 ) )
  138:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  139:             K=K-2
  140:          END IF
  141:         END DO
  142: *
  143: *  Compute (U \P' * B) -> B    [ (U \P' * B) ]
  144: *
  145:         CALL ZTRSM('L','U','N','U',N,NRHS,ONE,A,N,B,N)
  146: *
  147: *  Compute D \ B -> B   [ D \ (U \P' * B) ]
  148: *       
  149:          I=N
  150:          DO WHILE ( I .GE. 1 )
  151:             IF( IPIV(I) .GT. 0 ) THEN
  152:               S = DBLE( ONE ) / DBLE( A( I, I ) )
  153:               CALL ZDSCAL( NRHS, S, B( I, 1 ), LDB )
  154:             ELSEIF ( I .GT. 1) THEN
  155:                IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
  156:                   AKM1K = WORK(I)
  157:                   AKM1 = A( I-1, I-1 ) / AKM1K
  158:                   AK = A( I, I ) / DCONJG( AKM1K )
  159:                   DENOM = AKM1*AK - ONE
  160:                   DO 15 J = 1, NRHS
  161:                      BKM1 = B( I-1, J ) / AKM1K
  162:                      BK = B( I, J ) / DCONJG( AKM1K )
  163:                      B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
  164:                      B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
  165:  15              CONTINUE
  166:                I = I - 1
  167:                ENDIF
  168:             ENDIF
  169:             I = I - 1
  170:          END DO
  171: *
  172: *      Compute (U' \ B) -> B   [ U' \ (D \ (U \P' * B) ) ]
  173: *
  174:          CALL ZTRSM('L','U','C','U',N,NRHS,ONE,A,N,B,N)
  175: *
  176: *       P * B  [ P * (U' \ (D \ (U \P' * B) )) ]
  177: *
  178:         K=1
  179:         DO WHILE ( K .LE. N )
  180:          IF( IPIV( K ).GT.0 ) THEN
  181: *           1 x 1 diagonal block
  182: *           Interchange rows K and IPIV(K).
  183:             KP = IPIV( K )
  184:             IF( KP.NE.K )
  185:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  186:             K=K+1
  187:          ELSE
  188: *           2 x 2 diagonal block
  189: *           Interchange rows K-1 and -IPIV(K).
  190:             KP = -IPIV( K )
  191:             IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
  192:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  193:             K=K+2
  194:          ENDIF
  195:         END DO
  196: *
  197:       ELSE
  198: *
  199: *        Solve A*X = B, where A = L*D*L'.
  200: *
  201: *       P' * B  
  202:         K=1
  203:         DO WHILE ( K .LE. N )
  204:          IF( IPIV( K ).GT.0 ) THEN
  205: *           1 x 1 diagonal block
  206: *           Interchange rows K and IPIV(K).
  207:             KP = IPIV( K )
  208:             IF( KP.NE.K )
  209:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  210:             K=K+1
  211:          ELSE
  212: *           2 x 2 diagonal block
  213: *           Interchange rows K and -IPIV(K+1).
  214:             KP = -IPIV( K+1 )
  215:             IF( KP.EQ.-IPIV( K ) )
  216:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  217:             K=K+2
  218:          ENDIF
  219:         END DO
  220: *
  221: *  Compute (L \P' * B) -> B    [ (L \P' * B) ]
  222: *
  223:         CALL ZTRSM('L','L','N','U',N,NRHS,ONE,A,N,B,N)
  224: *
  225: *  Compute D \ B -> B   [ D \ (L \P' * B) ]
  226: *       
  227:          I=1
  228:          DO WHILE ( I .LE. N )
  229:             IF( IPIV(I) .GT. 0 ) THEN
  230:               S = DBLE( ONE ) / DBLE( A( I, I ) )
  231:               CALL ZDSCAL( NRHS, S, B( I, 1 ), LDB )
  232:             ELSE
  233:                   AKM1K = WORK(I)
  234:                   AKM1 = A( I, I ) / DCONJG( AKM1K )
  235:                   AK = A( I+1, I+1 ) / AKM1K
  236:                   DENOM = AKM1*AK - ONE
  237:                   DO 25 J = 1, NRHS
  238:                      BKM1 = B( I, J ) / DCONJG( AKM1K )
  239:                      BK = B( I+1, J ) / AKM1K
  240:                      B( I, J ) = ( AK*BKM1-BK ) / DENOM
  241:                      B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  242:  25              CONTINUE
  243:                   I = I + 1
  244:             ENDIF
  245:             I = I + 1
  246:          END DO
  247: *
  248: *  Compute (L' \ B) -> B   [ L' \ (D \ (L \P' * B) ) ]
  249:   250:         CALL ZTRSM('L','L','C','U',N,NRHS,ONE,A,N,B,N)
  251: *
  252: *       P * B  [ P * (L' \ (D \ (L \P' * B) )) ]
  253: *
  254:         K=N
  255:         DO WHILE ( K .GE. 1 )
  256:          IF( IPIV( K ).GT.0 ) THEN
  257: *           1 x 1 diagonal block
  258: *           Interchange rows K and IPIV(K).
  259:             KP = IPIV( K )
  260:             IF( KP.NE.K )
  261:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  262:             K=K-1
  263:          ELSE
  264: *           2 x 2 diagonal block
  265: *           Interchange rows K-1 and -IPIV(K).
  266:             KP = -IPIV( K )
  267:             IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
  268:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  269:             K=K-2
  270:          ENDIF
  271:         END DO
  272: *
  273:       END IF
  274: *
  275: *     Revert A
  276: *
  277:       CALL ZSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
  278: *
  279:       RETURN
  280: *
  281: *     End of ZHETRS2
  282: *
  283:       END

CVSweb interface <joel.bertrand@systella.fr>