File:  [local] / rpl / lapack / lapack / zhetrs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:25 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHETRS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHETRS solves a system of linear equations A*X = B with a complex
   39: *> Hermitian matrix A using the factorization A = U*D*U**H or
   40: *> A = L*D*L**H computed by ZHETRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZHETRF.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by ZHETRF.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] B
   89: *> \verbatim
   90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   91: *>          On entry, the right hand side matrix B.
   92: *>          On exit, the solution matrix X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDB
   96: *> \verbatim
   97: *>          LDB is INTEGER
   98: *>          The leading dimension of the array B.  LDB >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[out] INFO
  102: *> \verbatim
  103: *>          INFO is INTEGER
  104: *>          = 0:  successful exit
  105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *> \endverbatim
  107: *
  108: *  Authors:
  109: *  ========
  110: *
  111: *> \author Univ. of Tennessee
  112: *> \author Univ. of California Berkeley
  113: *> \author Univ. of Colorado Denver
  114: *> \author NAG Ltd.
  115: *
  116: *> \ingroup complex16HEcomputational
  117: *
  118: *  =====================================================================
  119:       SUBROUTINE ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  120: *
  121: *  -- LAPACK computational routine --
  122: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  123: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  124: *
  125: *     .. Scalar Arguments ..
  126:       CHARACTER          UPLO
  127:       INTEGER            INFO, LDA, LDB, N, NRHS
  128: *     ..
  129: *     .. Array Arguments ..
  130:       INTEGER            IPIV( * )
  131:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  132: *     ..
  133: *
  134: *  =====================================================================
  135: *
  136: *     .. Parameters ..
  137:       COMPLEX*16         ONE
  138:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  139: *     ..
  140: *     .. Local Scalars ..
  141:       LOGICAL            UPPER
  142:       INTEGER            J, K, KP
  143:       DOUBLE PRECISION   S
  144:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  145: *     ..
  146: *     .. External Functions ..
  147:       LOGICAL            LSAME
  148:       EXTERNAL           LSAME
  149: *     ..
  150: *     .. External Subroutines ..
  151:       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
  152: *     ..
  153: *     .. Intrinsic Functions ..
  154:       INTRINSIC          DBLE, DCONJG, MAX
  155: *     ..
  156: *     .. Executable Statements ..
  157: *
  158:       INFO = 0
  159:       UPPER = LSAME( UPLO, 'U' )
  160:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  161:          INFO = -1
  162:       ELSE IF( N.LT.0 ) THEN
  163:          INFO = -2
  164:       ELSE IF( NRHS.LT.0 ) THEN
  165:          INFO = -3
  166:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  167:          INFO = -5
  168:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  169:          INFO = -8
  170:       END IF
  171:       IF( INFO.NE.0 ) THEN
  172:          CALL XERBLA( 'ZHETRS', -INFO )
  173:          RETURN
  174:       END IF
  175: *
  176: *     Quick return if possible
  177: *
  178:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  179:      $   RETURN
  180: *
  181:       IF( UPPER ) THEN
  182: *
  183: *        Solve A*X = B, where A = U*D*U**H.
  184: *
  185: *        First solve U*D*X = B, overwriting B with X.
  186: *
  187: *        K is the main loop index, decreasing from N to 1 in steps of
  188: *        1 or 2, depending on the size of the diagonal blocks.
  189: *
  190:          K = N
  191:    10    CONTINUE
  192: *
  193: *        If K < 1, exit from loop.
  194: *
  195:          IF( K.LT.1 )
  196:      $      GO TO 30
  197: *
  198:          IF( IPIV( K ).GT.0 ) THEN
  199: *
  200: *           1 x 1 diagonal block
  201: *
  202: *           Interchange rows K and IPIV(K).
  203: *
  204:             KP = IPIV( K )
  205:             IF( KP.NE.K )
  206:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  207: *
  208: *           Multiply by inv(U(K)), where U(K) is the transformation
  209: *           stored in column K of A.
  210: *
  211:             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  212:      $                  B( 1, 1 ), LDB )
  213: *
  214: *           Multiply by the inverse of the diagonal block.
  215: *
  216:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  217:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  218:             K = K - 1
  219:          ELSE
  220: *
  221: *           2 x 2 diagonal block
  222: *
  223: *           Interchange rows K-1 and -IPIV(K).
  224: *
  225:             KP = -IPIV( K )
  226:             IF( KP.NE.K-1 )
  227:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  228: *
  229: *           Multiply by inv(U(K)), where U(K) is the transformation
  230: *           stored in columns K-1 and K of A.
  231: *
  232:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  233:      $                  B( 1, 1 ), LDB )
  234:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  235:      $                  LDB, B( 1, 1 ), LDB )
  236: *
  237: *           Multiply by the inverse of the diagonal block.
  238: *
  239:             AKM1K = A( K-1, K )
  240:             AKM1 = A( K-1, K-1 ) / AKM1K
  241:             AK = A( K, K ) / DCONJG( AKM1K )
  242:             DENOM = AKM1*AK - ONE
  243:             DO 20 J = 1, NRHS
  244:                BKM1 = B( K-1, J ) / AKM1K
  245:                BK = B( K, J ) / DCONJG( AKM1K )
  246:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  247:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  248:    20       CONTINUE
  249:             K = K - 2
  250:          END IF
  251: *
  252:          GO TO 10
  253:    30    CONTINUE
  254: *
  255: *        Next solve U**H *X = B, overwriting B with X.
  256: *
  257: *        K is the main loop index, increasing from 1 to N in steps of
  258: *        1 or 2, depending on the size of the diagonal blocks.
  259: *
  260:          K = 1
  261:    40    CONTINUE
  262: *
  263: *        If K > N, exit from loop.
  264: *
  265:          IF( K.GT.N )
  266:      $      GO TO 50
  267: *
  268:          IF( IPIV( K ).GT.0 ) THEN
  269: *
  270: *           1 x 1 diagonal block
  271: *
  272: *           Multiply by inv(U**H(K)), where U(K) is the transformation
  273: *           stored in column K of A.
  274: *
  275:             IF( K.GT.1 ) THEN
  276:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  277:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  278:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  279:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  280:             END IF
  281: *
  282: *           Interchange rows K and IPIV(K).
  283: *
  284:             KP = IPIV( K )
  285:             IF( KP.NE.K )
  286:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  287:             K = K + 1
  288:          ELSE
  289: *
  290: *           2 x 2 diagonal block
  291: *
  292: *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
  293: *           stored in columns K and K+1 of A.
  294: *
  295:             IF( K.GT.1 ) THEN
  296:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  297:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  298:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  299:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  300: *
  301:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  302:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  303:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  304:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  305:             END IF
  306: *
  307: *           Interchange rows K and -IPIV(K).
  308: *
  309:             KP = -IPIV( K )
  310:             IF( KP.NE.K )
  311:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  312:             K = K + 2
  313:          END IF
  314: *
  315:          GO TO 40
  316:    50    CONTINUE
  317: *
  318:       ELSE
  319: *
  320: *        Solve A*X = B, where A = L*D*L**H.
  321: *
  322: *        First solve L*D*X = B, overwriting B with X.
  323: *
  324: *        K is the main loop index, increasing from 1 to N in steps of
  325: *        1 or 2, depending on the size of the diagonal blocks.
  326: *
  327:          K = 1
  328:    60    CONTINUE
  329: *
  330: *        If K > N, exit from loop.
  331: *
  332:          IF( K.GT.N )
  333:      $      GO TO 80
  334: *
  335:          IF( IPIV( K ).GT.0 ) THEN
  336: *
  337: *           1 x 1 diagonal block
  338: *
  339: *           Interchange rows K and IPIV(K).
  340: *
  341:             KP = IPIV( K )
  342:             IF( KP.NE.K )
  343:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  344: *
  345: *           Multiply by inv(L(K)), where L(K) is the transformation
  346: *           stored in column K of A.
  347: *
  348:             IF( K.LT.N )
  349:      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  350:      $                     LDB, B( K+1, 1 ), LDB )
  351: *
  352: *           Multiply by the inverse of the diagonal block.
  353: *
  354:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  355:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  356:             K = K + 1
  357:          ELSE
  358: *
  359: *           2 x 2 diagonal block
  360: *
  361: *           Interchange rows K+1 and -IPIV(K).
  362: *
  363:             KP = -IPIV( K )
  364:             IF( KP.NE.K+1 )
  365:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  366: *
  367: *           Multiply by inv(L(K)), where L(K) is the transformation
  368: *           stored in columns K and K+1 of A.
  369: *
  370:             IF( K.LT.N-1 ) THEN
  371:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  372:      $                     LDB, B( K+2, 1 ), LDB )
  373:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  374:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  375:             END IF
  376: *
  377: *           Multiply by the inverse of the diagonal block.
  378: *
  379:             AKM1K = A( K+1, K )
  380:             AKM1 = A( K, K ) / DCONJG( AKM1K )
  381:             AK = A( K+1, K+1 ) / AKM1K
  382:             DENOM = AKM1*AK - ONE
  383:             DO 70 J = 1, NRHS
  384:                BKM1 = B( K, J ) / DCONJG( AKM1K )
  385:                BK = B( K+1, J ) / AKM1K
  386:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  387:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  388:    70       CONTINUE
  389:             K = K + 2
  390:          END IF
  391: *
  392:          GO TO 60
  393:    80    CONTINUE
  394: *
  395: *        Next solve L**H *X = B, overwriting B with X.
  396: *
  397: *        K is the main loop index, decreasing from N to 1 in steps of
  398: *        1 or 2, depending on the size of the diagonal blocks.
  399: *
  400:          K = N
  401:    90    CONTINUE
  402: *
  403: *        If K < 1, exit from loop.
  404: *
  405:          IF( K.LT.1 )
  406:      $      GO TO 100
  407: *
  408:          IF( IPIV( K ).GT.0 ) THEN
  409: *
  410: *           1 x 1 diagonal block
  411: *
  412: *           Multiply by inv(L**H(K)), where L(K) is the transformation
  413: *           stored in column K of A.
  414: *
  415:             IF( K.LT.N ) THEN
  416:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  417:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  418:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  419:      $                     B( K, 1 ), LDB )
  420:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  421:             END IF
  422: *
  423: *           Interchange rows K and IPIV(K).
  424: *
  425:             KP = IPIV( K )
  426:             IF( KP.NE.K )
  427:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  428:             K = K - 1
  429:          ELSE
  430: *
  431: *           2 x 2 diagonal block
  432: *
  433: *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
  434: *           stored in columns K-1 and K of A.
  435: *
  436:             IF( K.LT.N ) THEN
  437:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  438:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  439:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  440:      $                     B( K, 1 ), LDB )
  441:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  442: *
  443:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  444:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  445:      $                     B( K+1, 1 ), LDB, A( K+1, K-1 ), 1, ONE,
  446:      $                     B( K-1, 1 ), LDB )
  447:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  448:             END IF
  449: *
  450: *           Interchange rows K and -IPIV(K).
  451: *
  452:             KP = -IPIV( K )
  453:             IF( KP.NE.K )
  454:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  455:             K = K - 2
  456:          END IF
  457: *
  458:          GO TO 90
  459:   100    CONTINUE
  460:       END IF
  461: *
  462:       RETURN
  463: *
  464: *     End of ZHETRS
  465: *
  466:       END

CVSweb interface <joel.bertrand@systella.fr>