File:  [local] / rpl / lapack / lapack / zhetrs.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:16 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZHETRS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHETRS solves a system of linear equations A*X = B with a complex
   39: *> Hermitian matrix A using the factorization A = U*D*U**H or
   40: *> A = L*D*L**H computed by ZHETRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZHETRF.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by ZHETRF.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] B
   89: *> \verbatim
   90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   91: *>          On entry, the right hand side matrix B.
   92: *>          On exit, the solution matrix X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDB
   96: *> \verbatim
   97: *>          LDB is INTEGER
   98: *>          The leading dimension of the array B.  LDB >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[out] INFO
  102: *> \verbatim
  103: *>          INFO is INTEGER
  104: *>          = 0:  successful exit
  105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *> \endverbatim
  107: *
  108: *  Authors:
  109: *  ========
  110: *
  111: *> \author Univ. of Tennessee
  112: *> \author Univ. of California Berkeley
  113: *> \author Univ. of Colorado Denver
  114: *> \author NAG Ltd.
  115: *
  116: *> \date December 2016
  117: *
  118: *> \ingroup complex16HEcomputational
  119: *
  120: *  =====================================================================
  121:       SUBROUTINE ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  122: *
  123: *  -- LAPACK computational routine (version 3.7.0) --
  124: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  125: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  126: *     December 2016
  127: *
  128: *     .. Scalar Arguments ..
  129:       CHARACTER          UPLO
  130:       INTEGER            INFO, LDA, LDB, N, NRHS
  131: *     ..
  132: *     .. Array Arguments ..
  133:       INTEGER            IPIV( * )
  134:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  135: *     ..
  136: *
  137: *  =====================================================================
  138: *
  139: *     .. Parameters ..
  140:       COMPLEX*16         ONE
  141:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  142: *     ..
  143: *     .. Local Scalars ..
  144:       LOGICAL            UPPER
  145:       INTEGER            J, K, KP
  146:       DOUBLE PRECISION   S
  147:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  148: *     ..
  149: *     .. External Functions ..
  150:       LOGICAL            LSAME
  151:       EXTERNAL           LSAME
  152: *     ..
  153: *     .. External Subroutines ..
  154:       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
  155: *     ..
  156: *     .. Intrinsic Functions ..
  157:       INTRINSIC          DBLE, DCONJG, MAX
  158: *     ..
  159: *     .. Executable Statements ..
  160: *
  161:       INFO = 0
  162:       UPPER = LSAME( UPLO, 'U' )
  163:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  164:          INFO = -1
  165:       ELSE IF( N.LT.0 ) THEN
  166:          INFO = -2
  167:       ELSE IF( NRHS.LT.0 ) THEN
  168:          INFO = -3
  169:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  170:          INFO = -5
  171:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  172:          INFO = -8
  173:       END IF
  174:       IF( INFO.NE.0 ) THEN
  175:          CALL XERBLA( 'ZHETRS', -INFO )
  176:          RETURN
  177:       END IF
  178: *
  179: *     Quick return if possible
  180: *
  181:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  182:      $   RETURN
  183: *
  184:       IF( UPPER ) THEN
  185: *
  186: *        Solve A*X = B, where A = U*D*U**H.
  187: *
  188: *        First solve U*D*X = B, overwriting B with X.
  189: *
  190: *        K is the main loop index, decreasing from N to 1 in steps of
  191: *        1 or 2, depending on the size of the diagonal blocks.
  192: *
  193:          K = N
  194:    10    CONTINUE
  195: *
  196: *        If K < 1, exit from loop.
  197: *
  198:          IF( K.LT.1 )
  199:      $      GO TO 30
  200: *
  201:          IF( IPIV( K ).GT.0 ) THEN
  202: *
  203: *           1 x 1 diagonal block
  204: *
  205: *           Interchange rows K and IPIV(K).
  206: *
  207:             KP = IPIV( K )
  208:             IF( KP.NE.K )
  209:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  210: *
  211: *           Multiply by inv(U(K)), where U(K) is the transformation
  212: *           stored in column K of A.
  213: *
  214:             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  215:      $                  B( 1, 1 ), LDB )
  216: *
  217: *           Multiply by the inverse of the diagonal block.
  218: *
  219:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  220:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  221:             K = K - 1
  222:          ELSE
  223: *
  224: *           2 x 2 diagonal block
  225: *
  226: *           Interchange rows K-1 and -IPIV(K).
  227: *
  228:             KP = -IPIV( K )
  229:             IF( KP.NE.K-1 )
  230:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  231: *
  232: *           Multiply by inv(U(K)), where U(K) is the transformation
  233: *           stored in columns K-1 and K of A.
  234: *
  235:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  236:      $                  B( 1, 1 ), LDB )
  237:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  238:      $                  LDB, B( 1, 1 ), LDB )
  239: *
  240: *           Multiply by the inverse of the diagonal block.
  241: *
  242:             AKM1K = A( K-1, K )
  243:             AKM1 = A( K-1, K-1 ) / AKM1K
  244:             AK = A( K, K ) / DCONJG( AKM1K )
  245:             DENOM = AKM1*AK - ONE
  246:             DO 20 J = 1, NRHS
  247:                BKM1 = B( K-1, J ) / AKM1K
  248:                BK = B( K, J ) / DCONJG( AKM1K )
  249:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  250:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  251:    20       CONTINUE
  252:             K = K - 2
  253:          END IF
  254: *
  255:          GO TO 10
  256:    30    CONTINUE
  257: *
  258: *        Next solve U**H *X = B, overwriting B with X.
  259: *
  260: *        K is the main loop index, increasing from 1 to N in steps of
  261: *        1 or 2, depending on the size of the diagonal blocks.
  262: *
  263:          K = 1
  264:    40    CONTINUE
  265: *
  266: *        If K > N, exit from loop.
  267: *
  268:          IF( K.GT.N )
  269:      $      GO TO 50
  270: *
  271:          IF( IPIV( K ).GT.0 ) THEN
  272: *
  273: *           1 x 1 diagonal block
  274: *
  275: *           Multiply by inv(U**H(K)), where U(K) is the transformation
  276: *           stored in column K of A.
  277: *
  278:             IF( K.GT.1 ) THEN
  279:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  280:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  281:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  282:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  283:             END IF
  284: *
  285: *           Interchange rows K and IPIV(K).
  286: *
  287:             KP = IPIV( K )
  288:             IF( KP.NE.K )
  289:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  290:             K = K + 1
  291:          ELSE
  292: *
  293: *           2 x 2 diagonal block
  294: *
  295: *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
  296: *           stored in columns K and K+1 of A.
  297: *
  298:             IF( K.GT.1 ) THEN
  299:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  300:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  301:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  302:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  303: *
  304:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  305:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  306:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  307:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  308:             END IF
  309: *
  310: *           Interchange rows K and -IPIV(K).
  311: *
  312:             KP = -IPIV( K )
  313:             IF( KP.NE.K )
  314:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  315:             K = K + 2
  316:          END IF
  317: *
  318:          GO TO 40
  319:    50    CONTINUE
  320: *
  321:       ELSE
  322: *
  323: *        Solve A*X = B, where A = L*D*L**H.
  324: *
  325: *        First solve L*D*X = B, overwriting B with X.
  326: *
  327: *        K is the main loop index, increasing from 1 to N in steps of
  328: *        1 or 2, depending on the size of the diagonal blocks.
  329: *
  330:          K = 1
  331:    60    CONTINUE
  332: *
  333: *        If K > N, exit from loop.
  334: *
  335:          IF( K.GT.N )
  336:      $      GO TO 80
  337: *
  338:          IF( IPIV( K ).GT.0 ) THEN
  339: *
  340: *           1 x 1 diagonal block
  341: *
  342: *           Interchange rows K and IPIV(K).
  343: *
  344:             KP = IPIV( K )
  345:             IF( KP.NE.K )
  346:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  347: *
  348: *           Multiply by inv(L(K)), where L(K) is the transformation
  349: *           stored in column K of A.
  350: *
  351:             IF( K.LT.N )
  352:      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  353:      $                     LDB, B( K+1, 1 ), LDB )
  354: *
  355: *           Multiply by the inverse of the diagonal block.
  356: *
  357:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  358:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  359:             K = K + 1
  360:          ELSE
  361: *
  362: *           2 x 2 diagonal block
  363: *
  364: *           Interchange rows K+1 and -IPIV(K).
  365: *
  366:             KP = -IPIV( K )
  367:             IF( KP.NE.K+1 )
  368:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  369: *
  370: *           Multiply by inv(L(K)), where L(K) is the transformation
  371: *           stored in columns K and K+1 of A.
  372: *
  373:             IF( K.LT.N-1 ) THEN
  374:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  375:      $                     LDB, B( K+2, 1 ), LDB )
  376:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  377:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  378:             END IF
  379: *
  380: *           Multiply by the inverse of the diagonal block.
  381: *
  382:             AKM1K = A( K+1, K )
  383:             AKM1 = A( K, K ) / DCONJG( AKM1K )
  384:             AK = A( K+1, K+1 ) / AKM1K
  385:             DENOM = AKM1*AK - ONE
  386:             DO 70 J = 1, NRHS
  387:                BKM1 = B( K, J ) / DCONJG( AKM1K )
  388:                BK = B( K+1, J ) / AKM1K
  389:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  390:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  391:    70       CONTINUE
  392:             K = K + 2
  393:          END IF
  394: *
  395:          GO TO 60
  396:    80    CONTINUE
  397: *
  398: *        Next solve L**H *X = B, overwriting B with X.
  399: *
  400: *        K is the main loop index, decreasing from N to 1 in steps of
  401: *        1 or 2, depending on the size of the diagonal blocks.
  402: *
  403:          K = N
  404:    90    CONTINUE
  405: *
  406: *        If K < 1, exit from loop.
  407: *
  408:          IF( K.LT.1 )
  409:      $      GO TO 100
  410: *
  411:          IF( IPIV( K ).GT.0 ) THEN
  412: *
  413: *           1 x 1 diagonal block
  414: *
  415: *           Multiply by inv(L**H(K)), where L(K) is the transformation
  416: *           stored in column K of A.
  417: *
  418:             IF( K.LT.N ) THEN
  419:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  420:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  421:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  422:      $                     B( K, 1 ), LDB )
  423:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  424:             END IF
  425: *
  426: *           Interchange rows K and IPIV(K).
  427: *
  428:             KP = IPIV( K )
  429:             IF( KP.NE.K )
  430:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  431:             K = K - 1
  432:          ELSE
  433: *
  434: *           2 x 2 diagonal block
  435: *
  436: *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
  437: *           stored in columns K-1 and K of A.
  438: *
  439:             IF( K.LT.N ) THEN
  440:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  441:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  442:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  443:      $                     B( K, 1 ), LDB )
  444:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  445: *
  446:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  447:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  448:      $                     B( K+1, 1 ), LDB, A( K+1, K-1 ), 1, ONE,
  449:      $                     B( K-1, 1 ), LDB )
  450:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  451:             END IF
  452: *
  453: *           Interchange rows K and -IPIV(K).
  454: *
  455:             KP = -IPIV( K )
  456:             IF( KP.NE.K )
  457:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  458:             K = K - 2
  459:          END IF
  460: *
  461:          GO TO 90
  462:   100    CONTINUE
  463:       END IF
  464: *
  465:       RETURN
  466: *
  467: *     End of ZHETRS
  468: *
  469:       END

CVSweb interface <joel.bertrand@systella.fr>