File:  [local] / rpl / lapack / lapack / zhetrs.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, LDA, LDB, N, NRHS
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         A( LDA, * ), B( LDB, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZHETRS solves a system of linear equations A*X = B with a complex
   21: *  Hermitian matrix A using the factorization A = U*D*U**H or
   22: *  A = L*D*L**H computed by ZHETRF.
   23: *
   24: *  Arguments
   25: *  =========
   26: *
   27: *  UPLO    (input) CHARACTER*1
   28: *          Specifies whether the details of the factorization are stored
   29: *          as an upper or lower triangular matrix.
   30: *          = 'U':  Upper triangular, form is A = U*D*U**H;
   31: *          = 'L':  Lower triangular, form is A = L*D*L**H.
   32: *
   33: *  N       (input) INTEGER
   34: *          The order of the matrix A.  N >= 0.
   35: *
   36: *  NRHS    (input) INTEGER
   37: *          The number of right hand sides, i.e., the number of columns
   38: *          of the matrix B.  NRHS >= 0.
   39: *
   40: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   41: *          The block diagonal matrix D and the multipliers used to
   42: *          obtain the factor U or L as computed by ZHETRF.
   43: *
   44: *  LDA     (input) INTEGER
   45: *          The leading dimension of the array A.  LDA >= max(1,N).
   46: *
   47: *  IPIV    (input) INTEGER array, dimension (N)
   48: *          Details of the interchanges and the block structure of D
   49: *          as determined by ZHETRF.
   50: *
   51: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
   52: *          On entry, the right hand side matrix B.
   53: *          On exit, the solution matrix X.
   54: *
   55: *  LDB     (input) INTEGER
   56: *          The leading dimension of the array B.  LDB >= max(1,N).
   57: *
   58: *  INFO    (output) INTEGER
   59: *          = 0:  successful exit
   60: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   61: *
   62: *  =====================================================================
   63: *
   64: *     .. Parameters ..
   65:       COMPLEX*16         ONE
   66:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
   67: *     ..
   68: *     .. Local Scalars ..
   69:       LOGICAL            UPPER
   70:       INTEGER            J, K, KP
   71:       DOUBLE PRECISION   S
   72:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
   73: *     ..
   74: *     .. External Functions ..
   75:       LOGICAL            LSAME
   76:       EXTERNAL           LSAME
   77: *     ..
   78: *     .. External Subroutines ..
   79:       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
   80: *     ..
   81: *     .. Intrinsic Functions ..
   82:       INTRINSIC          DBLE, DCONJG, MAX
   83: *     ..
   84: *     .. Executable Statements ..
   85: *
   86:       INFO = 0
   87:       UPPER = LSAME( UPLO, 'U' )
   88:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   89:          INFO = -1
   90:       ELSE IF( N.LT.0 ) THEN
   91:          INFO = -2
   92:       ELSE IF( NRHS.LT.0 ) THEN
   93:          INFO = -3
   94:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
   95:          INFO = -5
   96:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
   97:          INFO = -8
   98:       END IF
   99:       IF( INFO.NE.0 ) THEN
  100:          CALL XERBLA( 'ZHETRS', -INFO )
  101:          RETURN
  102:       END IF
  103: *
  104: *     Quick return if possible
  105: *
  106:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  107:      $   RETURN
  108: *
  109:       IF( UPPER ) THEN
  110: *
  111: *        Solve A*X = B, where A = U*D*U'.
  112: *
  113: *        First solve U*D*X = B, overwriting B with X.
  114: *
  115: *        K is the main loop index, decreasing from N to 1 in steps of
  116: *        1 or 2, depending on the size of the diagonal blocks.
  117: *
  118:          K = N
  119:    10    CONTINUE
  120: *
  121: *        If K < 1, exit from loop.
  122: *
  123:          IF( K.LT.1 )
  124:      $      GO TO 30
  125: *
  126:          IF( IPIV( K ).GT.0 ) THEN
  127: *
  128: *           1 x 1 diagonal block
  129: *
  130: *           Interchange rows K and IPIV(K).
  131: *
  132:             KP = IPIV( K )
  133:             IF( KP.NE.K )
  134:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  135: *
  136: *           Multiply by inv(U(K)), where U(K) is the transformation
  137: *           stored in column K of A.
  138: *
  139:             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  140:      $                  B( 1, 1 ), LDB )
  141: *
  142: *           Multiply by the inverse of the diagonal block.
  143: *
  144:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  145:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  146:             K = K - 1
  147:          ELSE
  148: *
  149: *           2 x 2 diagonal block
  150: *
  151: *           Interchange rows K-1 and -IPIV(K).
  152: *
  153:             KP = -IPIV( K )
  154:             IF( KP.NE.K-1 )
  155:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  156: *
  157: *           Multiply by inv(U(K)), where U(K) is the transformation
  158: *           stored in columns K-1 and K of A.
  159: *
  160:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  161:      $                  B( 1, 1 ), LDB )
  162:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  163:      $                  LDB, B( 1, 1 ), LDB )
  164: *
  165: *           Multiply by the inverse of the diagonal block.
  166: *
  167:             AKM1K = A( K-1, K )
  168:             AKM1 = A( K-1, K-1 ) / AKM1K
  169:             AK = A( K, K ) / DCONJG( AKM1K )
  170:             DENOM = AKM1*AK - ONE
  171:             DO 20 J = 1, NRHS
  172:                BKM1 = B( K-1, J ) / AKM1K
  173:                BK = B( K, J ) / DCONJG( AKM1K )
  174:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  175:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  176:    20       CONTINUE
  177:             K = K - 2
  178:          END IF
  179: *
  180:          GO TO 10
  181:    30    CONTINUE
  182: *
  183: *        Next solve U'*X = B, overwriting B with X.
  184: *
  185: *        K is the main loop index, increasing from 1 to N in steps of
  186: *        1 or 2, depending on the size of the diagonal blocks.
  187: *
  188:          K = 1
  189:    40    CONTINUE
  190: *
  191: *        If K > N, exit from loop.
  192: *
  193:          IF( K.GT.N )
  194:      $      GO TO 50
  195: *
  196:          IF( IPIV( K ).GT.0 ) THEN
  197: *
  198: *           1 x 1 diagonal block
  199: *
  200: *           Multiply by inv(U'(K)), where U(K) is the transformation
  201: *           stored in column K of A.
  202: *
  203:             IF( K.GT.1 ) THEN
  204:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  205:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  206:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  207:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  208:             END IF
  209: *
  210: *           Interchange rows K and IPIV(K).
  211: *
  212:             KP = IPIV( K )
  213:             IF( KP.NE.K )
  214:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  215:             K = K + 1
  216:          ELSE
  217: *
  218: *           2 x 2 diagonal block
  219: *
  220: *           Multiply by inv(U'(K+1)), where U(K+1) is the transformation
  221: *           stored in columns K and K+1 of A.
  222: *
  223:             IF( K.GT.1 ) THEN
  224:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  225:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  226:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  227:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  228: *
  229:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  230:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  231:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  232:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  233:             END IF
  234: *
  235: *           Interchange rows K and -IPIV(K).
  236: *
  237:             KP = -IPIV( K )
  238:             IF( KP.NE.K )
  239:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  240:             K = K + 2
  241:          END IF
  242: *
  243:          GO TO 40
  244:    50    CONTINUE
  245: *
  246:       ELSE
  247: *
  248: *        Solve A*X = B, where A = L*D*L'.
  249: *
  250: *        First solve L*D*X = B, overwriting B with X.
  251: *
  252: *        K is the main loop index, increasing from 1 to N in steps of
  253: *        1 or 2, depending on the size of the diagonal blocks.
  254: *
  255:          K = 1
  256:    60    CONTINUE
  257: *
  258: *        If K > N, exit from loop.
  259: *
  260:          IF( K.GT.N )
  261:      $      GO TO 80
  262: *
  263:          IF( IPIV( K ).GT.0 ) THEN
  264: *
  265: *           1 x 1 diagonal block
  266: *
  267: *           Interchange rows K and IPIV(K).
  268: *
  269:             KP = IPIV( K )
  270:             IF( KP.NE.K )
  271:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  272: *
  273: *           Multiply by inv(L(K)), where L(K) is the transformation
  274: *           stored in column K of A.
  275: *
  276:             IF( K.LT.N )
  277:      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  278:      $                     LDB, B( K+1, 1 ), LDB )
  279: *
  280: *           Multiply by the inverse of the diagonal block.
  281: *
  282:             S = DBLE( ONE ) / DBLE( A( K, K ) )
  283:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  284:             K = K + 1
  285:          ELSE
  286: *
  287: *           2 x 2 diagonal block
  288: *
  289: *           Interchange rows K+1 and -IPIV(K).
  290: *
  291:             KP = -IPIV( K )
  292:             IF( KP.NE.K+1 )
  293:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  294: *
  295: *           Multiply by inv(L(K)), where L(K) is the transformation
  296: *           stored in columns K and K+1 of A.
  297: *
  298:             IF( K.LT.N-1 ) THEN
  299:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  300:      $                     LDB, B( K+2, 1 ), LDB )
  301:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  302:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  303:             END IF
  304: *
  305: *           Multiply by the inverse of the diagonal block.
  306: *
  307:             AKM1K = A( K+1, K )
  308:             AKM1 = A( K, K ) / DCONJG( AKM1K )
  309:             AK = A( K+1, K+1 ) / AKM1K
  310:             DENOM = AKM1*AK - ONE
  311:             DO 70 J = 1, NRHS
  312:                BKM1 = B( K, J ) / DCONJG( AKM1K )
  313:                BK = B( K+1, J ) / AKM1K
  314:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  315:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  316:    70       CONTINUE
  317:             K = K + 2
  318:          END IF
  319: *
  320:          GO TO 60
  321:    80    CONTINUE
  322: *
  323: *        Next solve L'*X = B, overwriting B with X.
  324: *
  325: *        K is the main loop index, decreasing from N to 1 in steps of
  326: *        1 or 2, depending on the size of the diagonal blocks.
  327: *
  328:          K = N
  329:    90    CONTINUE
  330: *
  331: *        If K < 1, exit from loop.
  332: *
  333:          IF( K.LT.1 )
  334:      $      GO TO 100
  335: *
  336:          IF( IPIV( K ).GT.0 ) THEN
  337: *
  338: *           1 x 1 diagonal block
  339: *
  340: *           Multiply by inv(L'(K)), where L(K) is the transformation
  341: *           stored in column K of A.
  342: *
  343:             IF( K.LT.N ) THEN
  344:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  345:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  346:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  347:      $                     B( K, 1 ), LDB )
  348:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  349:             END IF
  350: *
  351: *           Interchange rows K and IPIV(K).
  352: *
  353:             KP = IPIV( K )
  354:             IF( KP.NE.K )
  355:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  356:             K = K - 1
  357:          ELSE
  358: *
  359: *           2 x 2 diagonal block
  360: *
  361: *           Multiply by inv(L'(K-1)), where L(K-1) is the transformation
  362: *           stored in columns K-1 and K of A.
  363: *
  364:             IF( K.LT.N ) THEN
  365:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  366:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  367:      $                     B( K+1, 1 ), LDB, A( K+1, K ), 1, ONE,
  368:      $                     B( K, 1 ), LDB )
  369:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  370: *
  371:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  372:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  373:      $                     B( K+1, 1 ), LDB, A( K+1, K-1 ), 1, ONE,
  374:      $                     B( K-1, 1 ), LDB )
  375:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  376:             END IF
  377: *
  378: *           Interchange rows K and -IPIV(K).
  379: *
  380:             KP = -IPIV( K )
  381:             IF( KP.NE.K )
  382:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  383:             K = K - 2
  384:          END IF
  385: *
  386:          GO TO 90
  387:   100    CONTINUE
  388:       END IF
  389: *
  390:       RETURN
  391: *
  392: *     End of ZHETRS
  393: *
  394:       END

CVSweb interface <joel.bertrand@systella.fr>