--- rpl/lapack/lapack/zhetri2.f 2011/07/24 10:31:08 1.1
+++ rpl/lapack/lapack/zhetri2.f 2016/08/27 15:34:51 1.8
@@ -1,13 +1,136 @@
+*> \brief \b ZHETRI2
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZHETRI2 + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX*16 A( LDA, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZHETRI2 computes the inverse of a COMPLEX*16 hermitian indefinite matrix
+*> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
+*> ZHETRF. ZHETRI2 set the LEADING DIMENSION of the workspace
+*> before calling ZHETRI2X that actually computes the inverse.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the details of the factorization are stored
+*> as an upper or lower triangular matrix.
+*> = 'U': Upper triangular, form is A = U*D*U**T;
+*> = 'L': Lower triangular, form is A = L*D*L**T.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the NB diagonal matrix D and the multipliers
+*> used to obtain the factor U or L as computed by ZHETRF.
+*>
+*> On exit, if INFO = 0, the (symmetric) inverse of the original
+*> matrix. If UPLO = 'U', the upper triangular part of the
+*> inverse is formed and the part of A below the diagonal is not
+*> referenced; if UPLO = 'L' the lower triangular part of the
+*> inverse is formed and the part of A above the diagonal is
+*> not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> Details of the interchanges and the NB structure of D
+*> as determined by ZHETRF.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (N+NB+1)*(NB+3)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> WORK is size >= (N+NB+1)*(NB+3)
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> calculates:
+*> - the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array,
+*> - and no error message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
+*> inverse could not be computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2015
+*
+*> \ingroup complex16HEcomputational
+*
+* =====================================================================
SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
-* -- LAPACK routine (version 3.3.1) --
+* -- LAPACK computational routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
-*
-* -- Written by Julie Langou of the Univ. of TN --
-*
-* @precisions normal z -> c
+* November 2015
*
* .. Scalar Arguments ..
CHARACTER UPLO
@@ -18,61 +141,6 @@
COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* ZHETRI2 computes the inverse of a COMPLEX*16 hermitian indefinite matrix
-* A using the factorization A = U*D*U**T or A = L*D*L**T computed by
-* ZHETRF. ZHETRI2 set the LEADING DIMENSION of the workspace
-* before calling ZHETRI2X that actually computes the inverse.
-*
-* Arguments
-* =========
-*
-* UPLO (input) CHARACTER*1
-* Specifies whether the details of the factorization are stored
-* as an upper or lower triangular matrix.
-* = 'U': Upper triangular, form is A = U*D*U**T;
-* = 'L': Lower triangular, form is A = L*D*L**T.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input/output) COMPLEX*16 array, dimension (LDA,N)
-* On entry, the NB diagonal matrix D and the multipliers
-* used to obtain the factor U or L as computed by ZHETRF.
-*
-* On exit, if INFO = 0, the (symmetric) inverse of the original
-* matrix. If UPLO = 'U', the upper triangular part of the
-* inverse is formed and the part of A below the diagonal is not
-* referenced; if UPLO = 'L' the lower triangular part of the
-* inverse is formed and the part of A above the diagonal is
-* not referenced.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* IPIV (input) INTEGER array, dimension (N)
-* Details of the interchanges and the NB structure of D
-* as determined by ZHETRF.
-*
-* WORK (workspace) COMPLEX*16 array, dimension (N+NB+1)*(NB+3)
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK.
-* WORK is size >= (N+NB+1)*(NB+3)
-* If LDWORK = -1, then a workspace query is assumed; the routine
-* calculates:
-* - the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array,
-* - and no error message related to LDWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
-* inverse could not be computed.
-*
* =====================================================================
*
* .. Local Scalars ..