Annotation of rpl/lapack/lapack/zhetrf_rook.f, revision 1.7

1.1       bertrand    1: *> \brief \b ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHETRF_ROOK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_rook.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_rook.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_rook.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LWORK, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     30: *       ..
                     31: *
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZHETRF_ROOK computes the factorization of a complex Hermitian matrix A
                     39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
                     40: *> The form of the factorization is
                     41: *>
                     42: *>    A = U*D*U**T  or  A = L*D*L**T
                     43: *>
                     44: *> where U (or L) is a product of permutation and unit upper (lower)
                     45: *> triangular matrices, and D is Hermitian and block diagonal with
                     46: *> 1-by-1 and 2-by-2 diagonal blocks.
                     47: *>
                     48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] UPLO
                     55: *> \verbatim
                     56: *>          UPLO is CHARACTER*1
                     57: *>          = 'U':  Upper triangle of A is stored;
                     58: *>          = 'L':  Lower triangle of A is stored.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in,out] A
                     68: *> \verbatim
                     69: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     70: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     71: *>          N-by-N upper triangular part of A contains the upper
                     72: *>          triangular part of the matrix A, and the strictly lower
                     73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     74: *>          leading N-by-N lower triangular part of A contains the lower
                     75: *>          triangular part of the matrix A, and the strictly upper
                     76: *>          triangular part of A is not referenced.
                     77: *>
                     78: *>          On exit, the block diagonal matrix D and the multipliers used
                     79: *>          to obtain the factor U or L (see below for further details).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] IPIV
                     89: *> \verbatim
                     90: *>          IPIV is INTEGER array, dimension (N)
                     91: *>          Details of the interchanges and the block structure of D.
                     92: *>
                     93: *>          If UPLO = 'U':
                     94: *>             Only the last KB elements of IPIV are set.
                     95: *>
                     96: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     97: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                     98: *>
                     99: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
                    100: *>             columns k and -IPIV(k) were interchanged and rows and
                    101: *>             columns k-1 and -IPIV(k-1) were inerchaged,
                    102: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    103: *>
                    104: *>          If UPLO = 'L':
                    105: *>             Only the first KB elements of IPIV are set.
                    106: *>
                    107: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
                    108: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
                    109: *>
                    110: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
                    111: *>             columns k and -IPIV(k) were interchanged and rows and
                    112: *>             columns k+1 and -IPIV(k+1) were inerchaged,
                    113: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[out] WORK
                    117: *> \verbatim
                    118: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
                    119: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] LWORK
                    123: *> \verbatim
                    124: *>          LWORK is INTEGER
                    125: *>          The length of WORK.  LWORK >=1.  For best performance
                    126: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
                    127: *>
                    128: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    129: *>          only calculates the optimal size of the WORK array, returns
                    130: *>          this value as the first entry of the WORK array, and no error
                    131: *>          message related to LWORK is issued by XERBLA.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] INFO
                    135: *> \verbatim
                    136: *>          INFO is INTEGER
                    137: *>          = 0:  successful exit
                    138: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    139: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                    140: *>                has been completed, but the block diagonal matrix D is
                    141: *>                exactly singular, and division by zero will occur if it
                    142: *>                is used to solve a system of equations.
                    143: *> \endverbatim
                    144: *
                    145: *  Authors:
                    146: *  ========
                    147: *
                    148: *> \author Univ. of Tennessee
                    149: *> \author Univ. of California Berkeley
                    150: *> \author Univ. of Colorado Denver
                    151: *> \author NAG Ltd.
                    152: *
                    153: *> \ingroup complex16HEcomputational
                    154: *
                    155: *> \par Further Details:
                    156: *  =====================
                    157: *>
                    158: *> \verbatim
                    159: *>
                    160: *>  If UPLO = 'U', then A = U*D*U**T, where
                    161: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                    162: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                    163: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    164: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    165: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                    166: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    167: *>
                    168: *>             (   I    v    0   )   k-s
                    169: *>     U(k) =  (   0    I    0   )   s
                    170: *>             (   0    0    I   )   n-k
                    171: *>                k-s   s   n-k
                    172: *>
                    173: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    174: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    175: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    176: *>
                    177: *>  If UPLO = 'L', then A = L*D*L**T, where
                    178: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    179: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    180: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    181: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    182: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    183: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    184: *>
                    185: *>             (   I    0     0   )  k-1
                    186: *>     L(k) =  (   0    I     0   )  s
                    187: *>             (   0    v     I   )  n-k-s+1
                    188: *>                k-1   s  n-k-s+1
                    189: *>
                    190: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    191: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    192: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    193: *> \endverbatim
                    194: *
                    195: *> \par Contributors:
                    196: *  ==================
                    197: *>
                    198: *> \verbatim
                    199: *>
1.3       bertrand  200: *>  June 2016,  Igor Kozachenko,
1.1       bertrand  201: *>                  Computer Science Division,
                    202: *>                  University of California, Berkeley
                    203: *>
                    204: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    205: *>                  School of Mathematics,
                    206: *>                  University of Manchester
                    207: *>
                    208: *> \endverbatim
                    209: *
                    210: *  =====================================================================
                    211:       SUBROUTINE ZHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    212: *
1.7     ! bertrand  213: *  -- LAPACK computational routine --
1.1       bertrand  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    216: *
                    217: *     .. Scalar Arguments ..
                    218:       CHARACTER          UPLO
                    219:       INTEGER            INFO, LDA, LWORK, N
                    220: *     ..
                    221: *     .. Array Arguments ..
                    222:       INTEGER            IPIV( * )
                    223:       COMPLEX*16         A( LDA, * ), WORK( * )
                    224: *     ..
                    225: *
                    226: *  =====================================================================
                    227: *
                    228: *     .. Local Scalars ..
                    229:       LOGICAL            LQUERY, UPPER
                    230:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    231: *     ..
                    232: *     .. External Functions ..
                    233:       LOGICAL            LSAME
                    234:       INTEGER            ILAENV
                    235:       EXTERNAL           LSAME, ILAENV
                    236: *     ..
                    237: *     .. External Subroutines ..
                    238:       EXTERNAL           ZLAHEF_ROOK, ZHETF2_ROOK, XERBLA
                    239: *     ..
                    240: *     .. Intrinsic Functions ..
                    241:       INTRINSIC          MAX
                    242: *     ..
                    243: *     .. Executable Statements ..
                    244: *
                    245: *     Test the input parameters.
                    246: *
                    247:       INFO = 0
                    248:       UPPER = LSAME( UPLO, 'U' )
                    249:       LQUERY = ( LWORK.EQ.-1 )
                    250:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    251:          INFO = -1
                    252:       ELSE IF( N.LT.0 ) THEN
                    253:          INFO = -2
                    254:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    255:          INFO = -4
                    256:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    257:          INFO = -7
                    258:       END IF
                    259: *
                    260:       IF( INFO.EQ.0 ) THEN
                    261: *
                    262: *        Determine the block size
                    263: *
                    264:          NB = ILAENV( 1, 'ZHETRF_ROOK', UPLO, N, -1, -1, -1 )
1.3       bertrand  265:          LWKOPT = MAX( 1, N*NB )
1.1       bertrand  266:          WORK( 1 ) = LWKOPT
                    267:       END IF
                    268: *
                    269:       IF( INFO.NE.0 ) THEN
                    270:          CALL XERBLA( 'ZHETRF_ROOK', -INFO )
                    271:          RETURN
                    272:       ELSE IF( LQUERY ) THEN
                    273:          RETURN
                    274:       END IF
                    275: *
                    276:       NBMIN = 2
                    277:       LDWORK = N
                    278:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    279:          IWS = LDWORK*NB
                    280:          IF( LWORK.LT.IWS ) THEN
                    281:             NB = MAX( LWORK / LDWORK, 1 )
                    282:             NBMIN = MAX( 2, ILAENV( 2, 'ZHETRF_ROOK',
                    283:      $                              UPLO, N, -1, -1, -1 ) )
                    284:          END IF
                    285:       ELSE
                    286:          IWS = 1
                    287:       END IF
                    288:       IF( NB.LT.NBMIN )
                    289:      $   NB = N
                    290: *
                    291:       IF( UPPER ) THEN
                    292: *
                    293: *        Factorize A as U*D*U**T using the upper triangle of A
                    294: *
                    295: *        K is the main loop index, decreasing from N to 1 in steps of
                    296: *        KB, where KB is the number of columns factorized by ZLAHEF_ROOK;
                    297: *        KB is either NB or NB-1, or K for the last block
                    298: *
                    299:          K = N
                    300:    10    CONTINUE
                    301: *
                    302: *        If K < 1, exit from loop
                    303: *
                    304:          IF( K.LT.1 )
                    305:      $      GO TO 40
                    306: *
                    307:          IF( K.GT.NB ) THEN
                    308: *
                    309: *           Factorize columns k-kb+1:k of A and use blocked code to
                    310: *           update columns 1:k-kb
                    311: *
                    312:             CALL ZLAHEF_ROOK( UPLO, K, NB, KB, A, LDA,
                    313:      $                        IPIV, WORK, LDWORK, IINFO )
                    314:          ELSE
                    315: *
                    316: *           Use unblocked code to factorize columns 1:k of A
                    317: *
                    318:             CALL ZHETF2_ROOK( UPLO, K, A, LDA, IPIV, IINFO )
                    319:             KB = K
                    320:          END IF
                    321: *
                    322: *        Set INFO on the first occurrence of a zero pivot
                    323: *
                    324:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    325:      $      INFO = IINFO
                    326: *
                    327: *        No need to adjust IPIV
                    328: *
                    329: *        Decrease K and return to the start of the main loop
                    330: *
                    331:          K = K - KB
                    332:          GO TO 10
                    333: *
                    334:       ELSE
                    335: *
                    336: *        Factorize A as L*D*L**T using the lower triangle of A
                    337: *
                    338: *        K is the main loop index, increasing from 1 to N in steps of
                    339: *        KB, where KB is the number of columns factorized by ZLAHEF_ROOK;
                    340: *        KB is either NB or NB-1, or N-K+1 for the last block
                    341: *
                    342:          K = 1
                    343:    20    CONTINUE
                    344: *
                    345: *        If K > N, exit from loop
                    346: *
                    347:          IF( K.GT.N )
                    348:      $      GO TO 40
                    349: *
                    350:          IF( K.LE.N-NB ) THEN
                    351: *
                    352: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    353: *           update columns k+kb:n
                    354: *
                    355:             CALL ZLAHEF_ROOK( UPLO, N-K+1, NB, KB, A( K, K ), LDA,
                    356:      $                        IPIV( K ), WORK, LDWORK, IINFO )
                    357:          ELSE
                    358: *
                    359: *           Use unblocked code to factorize columns k:n of A
                    360: *
                    361:             CALL ZHETF2_ROOK( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ),
                    362:      $                        IINFO )
                    363:             KB = N - K + 1
                    364:          END IF
                    365: *
                    366: *        Set INFO on the first occurrence of a zero pivot
                    367: *
                    368:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    369:      $      INFO = IINFO + K - 1
                    370: *
                    371: *        Adjust IPIV
                    372: *
                    373:          DO 30 J = K, K + KB - 1
                    374:             IF( IPIV( J ).GT.0 ) THEN
                    375:                IPIV( J ) = IPIV( J ) + K - 1
                    376:             ELSE
                    377:                IPIV( J ) = IPIV( J ) - K + 1
                    378:             END IF
                    379:    30    CONTINUE
                    380: *
                    381: *        Increase K and return to the start of the main loop
                    382: *
                    383:          K = K + KB
                    384:          GO TO 20
                    385: *
                    386:       END IF
                    387: *
                    388:    40 CONTINUE
                    389:       WORK( 1 ) = LWKOPT
                    390:       RETURN
                    391: *
                    392: *     End of ZHETRF_ROOK
                    393: *
                    394:       END

CVSweb interface <joel.bertrand@systella.fr>