Annotation of rpl/lapack/lapack/zhetrf_rook.f, revision 1.2

1.1       bertrand    1: *> \brief \b ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHETRF_ROOK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_rook.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_rook.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_rook.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LWORK, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     30: *       ..
                     31: *
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZHETRF_ROOK computes the factorization of a complex Hermitian matrix A
                     39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
                     40: *> The form of the factorization is
                     41: *>
                     42: *>    A = U*D*U**T  or  A = L*D*L**T
                     43: *>
                     44: *> where U (or L) is a product of permutation and unit upper (lower)
                     45: *> triangular matrices, and D is Hermitian and block diagonal with
                     46: *> 1-by-1 and 2-by-2 diagonal blocks.
                     47: *>
                     48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] UPLO
                     55: *> \verbatim
                     56: *>          UPLO is CHARACTER*1
                     57: *>          = 'U':  Upper triangle of A is stored;
                     58: *>          = 'L':  Lower triangle of A is stored.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in,out] A
                     68: *> \verbatim
                     69: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     70: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     71: *>          N-by-N upper triangular part of A contains the upper
                     72: *>          triangular part of the matrix A, and the strictly lower
                     73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     74: *>          leading N-by-N lower triangular part of A contains the lower
                     75: *>          triangular part of the matrix A, and the strictly upper
                     76: *>          triangular part of A is not referenced.
                     77: *>
                     78: *>          On exit, the block diagonal matrix D and the multipliers used
                     79: *>          to obtain the factor U or L (see below for further details).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] IPIV
                     89: *> \verbatim
                     90: *>          IPIV is INTEGER array, dimension (N)
                     91: *>          Details of the interchanges and the block structure of D.
                     92: *>
                     93: *>          If UPLO = 'U':
                     94: *>             Only the last KB elements of IPIV are set.
                     95: *>
                     96: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     97: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                     98: *>
                     99: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
                    100: *>             columns k and -IPIV(k) were interchanged and rows and
                    101: *>             columns k-1 and -IPIV(k-1) were inerchaged,
                    102: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    103: *>
                    104: *>          If UPLO = 'L':
                    105: *>             Only the first KB elements of IPIV are set.
                    106: *>
                    107: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
                    108: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
                    109: *>
                    110: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
                    111: *>             columns k and -IPIV(k) were interchanged and rows and
                    112: *>             columns k+1 and -IPIV(k+1) were inerchaged,
                    113: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[out] WORK
                    117: *> \verbatim
                    118: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
                    119: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] LWORK
                    123: *> \verbatim
                    124: *>          LWORK is INTEGER
                    125: *>          The length of WORK.  LWORK >=1.  For best performance
                    126: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
                    127: *>
                    128: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    129: *>          only calculates the optimal size of the WORK array, returns
                    130: *>          this value as the first entry of the WORK array, and no error
                    131: *>          message related to LWORK is issued by XERBLA.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] INFO
                    135: *> \verbatim
                    136: *>          INFO is INTEGER
                    137: *>          = 0:  successful exit
                    138: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    139: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                    140: *>                has been completed, but the block diagonal matrix D is
                    141: *>                exactly singular, and division by zero will occur if it
                    142: *>                is used to solve a system of equations.
                    143: *> \endverbatim
                    144: *
                    145: *  Authors:
                    146: *  ========
                    147: *
                    148: *> \author Univ. of Tennessee
                    149: *> \author Univ. of California Berkeley
                    150: *> \author Univ. of Colorado Denver
                    151: *> \author NAG Ltd.
                    152: *
                    153: *> \date November 2013
                    154: *
                    155: *> \ingroup complex16HEcomputational
                    156: *
                    157: *> \par Further Details:
                    158: *  =====================
                    159: *>
                    160: *> \verbatim
                    161: *>
                    162: *>  If UPLO = 'U', then A = U*D*U**T, where
                    163: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                    164: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                    165: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    166: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    167: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                    168: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    169: *>
                    170: *>             (   I    v    0   )   k-s
                    171: *>     U(k) =  (   0    I    0   )   s
                    172: *>             (   0    0    I   )   n-k
                    173: *>                k-s   s   n-k
                    174: *>
                    175: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    176: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    177: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    178: *>
                    179: *>  If UPLO = 'L', then A = L*D*L**T, where
                    180: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    181: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    182: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    183: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    184: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    185: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    186: *>
                    187: *>             (   I    0     0   )  k-1
                    188: *>     L(k) =  (   0    I     0   )  s
                    189: *>             (   0    v     I   )  n-k-s+1
                    190: *>                k-1   s  n-k-s+1
                    191: *>
                    192: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    193: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    194: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    195: *> \endverbatim
                    196: *
                    197: *> \par Contributors:
                    198: *  ==================
                    199: *>
                    200: *> \verbatim
                    201: *>
                    202: *>  November 2013,  Igor Kozachenko,
                    203: *>                  Computer Science Division,
                    204: *>                  University of California, Berkeley
                    205: *>
                    206: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    207: *>                  School of Mathematics,
                    208: *>                  University of Manchester
                    209: *>
                    210: *> \endverbatim
                    211: *
                    212: *  =====================================================================
                    213:       SUBROUTINE ZHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    214: *
                    215: *  -- LAPACK computational routine (version 3.5.0) --
                    216: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    217: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    218: *     November 2013
                    219: *
                    220: *     .. Scalar Arguments ..
                    221:       CHARACTER          UPLO
                    222:       INTEGER            INFO, LDA, LWORK, N
                    223: *     ..
                    224: *     .. Array Arguments ..
                    225:       INTEGER            IPIV( * )
                    226:       COMPLEX*16         A( LDA, * ), WORK( * )
                    227: *     ..
                    228: *
                    229: *  =====================================================================
                    230: *
                    231: *     .. Local Scalars ..
                    232:       LOGICAL            LQUERY, UPPER
                    233:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    234: *     ..
                    235: *     .. External Functions ..
                    236:       LOGICAL            LSAME
                    237:       INTEGER            ILAENV
                    238:       EXTERNAL           LSAME, ILAENV
                    239: *     ..
                    240: *     .. External Subroutines ..
                    241:       EXTERNAL           ZLAHEF_ROOK, ZHETF2_ROOK, XERBLA
                    242: *     ..
                    243: *     .. Intrinsic Functions ..
                    244:       INTRINSIC          MAX
                    245: *     ..
                    246: *     .. Executable Statements ..
                    247: *
                    248: *     Test the input parameters.
                    249: *
                    250:       INFO = 0
                    251:       UPPER = LSAME( UPLO, 'U' )
                    252:       LQUERY = ( LWORK.EQ.-1 )
                    253:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    254:          INFO = -1
                    255:       ELSE IF( N.LT.0 ) THEN
                    256:          INFO = -2
                    257:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    258:          INFO = -4
                    259:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    260:          INFO = -7
                    261:       END IF
                    262: *
                    263:       IF( INFO.EQ.0 ) THEN
                    264: *
                    265: *        Determine the block size
                    266: *
                    267:          NB = ILAENV( 1, 'ZHETRF_ROOK', UPLO, N, -1, -1, -1 )
                    268:          LWKOPT = N*NB
                    269:          WORK( 1 ) = LWKOPT
                    270:       END IF
                    271: *
                    272:       IF( INFO.NE.0 ) THEN
                    273:          CALL XERBLA( 'ZHETRF_ROOK', -INFO )
                    274:          RETURN
                    275:       ELSE IF( LQUERY ) THEN
                    276:          RETURN
                    277:       END IF
                    278: *
                    279:       NBMIN = 2
                    280:       LDWORK = N
                    281:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    282:          IWS = LDWORK*NB
                    283:          IF( LWORK.LT.IWS ) THEN
                    284:             NB = MAX( LWORK / LDWORK, 1 )
                    285:             NBMIN = MAX( 2, ILAENV( 2, 'ZHETRF_ROOK',
                    286:      $                              UPLO, N, -1, -1, -1 ) )
                    287:          END IF
                    288:       ELSE
                    289:          IWS = 1
                    290:       END IF
                    291:       IF( NB.LT.NBMIN )
                    292:      $   NB = N
                    293: *
                    294:       IF( UPPER ) THEN
                    295: *
                    296: *        Factorize A as U*D*U**T using the upper triangle of A
                    297: *
                    298: *        K is the main loop index, decreasing from N to 1 in steps of
                    299: *        KB, where KB is the number of columns factorized by ZLAHEF_ROOK;
                    300: *        KB is either NB or NB-1, or K for the last block
                    301: *
                    302:          K = N
                    303:    10    CONTINUE
                    304: *
                    305: *        If K < 1, exit from loop
                    306: *
                    307:          IF( K.LT.1 )
                    308:      $      GO TO 40
                    309: *
                    310:          IF( K.GT.NB ) THEN
                    311: *
                    312: *           Factorize columns k-kb+1:k of A and use blocked code to
                    313: *           update columns 1:k-kb
                    314: *
                    315:             CALL ZLAHEF_ROOK( UPLO, K, NB, KB, A, LDA,
                    316:      $                        IPIV, WORK, LDWORK, IINFO )
                    317:          ELSE
                    318: *
                    319: *           Use unblocked code to factorize columns 1:k of A
                    320: *
                    321:             CALL ZHETF2_ROOK( UPLO, K, A, LDA, IPIV, IINFO )
                    322:             KB = K
                    323:          END IF
                    324: *
                    325: *        Set INFO on the first occurrence of a zero pivot
                    326: *
                    327:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    328:      $      INFO = IINFO
                    329: *
                    330: *        No need to adjust IPIV
                    331: *
                    332: *        Decrease K and return to the start of the main loop
                    333: *
                    334:          K = K - KB
                    335:          GO TO 10
                    336: *
                    337:       ELSE
                    338: *
                    339: *        Factorize A as L*D*L**T using the lower triangle of A
                    340: *
                    341: *        K is the main loop index, increasing from 1 to N in steps of
                    342: *        KB, where KB is the number of columns factorized by ZLAHEF_ROOK;
                    343: *        KB is either NB or NB-1, or N-K+1 for the last block
                    344: *
                    345:          K = 1
                    346:    20    CONTINUE
                    347: *
                    348: *        If K > N, exit from loop
                    349: *
                    350:          IF( K.GT.N )
                    351:      $      GO TO 40
                    352: *
                    353:          IF( K.LE.N-NB ) THEN
                    354: *
                    355: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    356: *           update columns k+kb:n
                    357: *
                    358:             CALL ZLAHEF_ROOK( UPLO, N-K+1, NB, KB, A( K, K ), LDA,
                    359:      $                        IPIV( K ), WORK, LDWORK, IINFO )
                    360:          ELSE
                    361: *
                    362: *           Use unblocked code to factorize columns k:n of A
                    363: *
                    364:             CALL ZHETF2_ROOK( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ),
                    365:      $                        IINFO )
                    366:             KB = N - K + 1
                    367:          END IF
                    368: *
                    369: *        Set INFO on the first occurrence of a zero pivot
                    370: *
                    371:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    372:      $      INFO = IINFO + K - 1
                    373: *
                    374: *        Adjust IPIV
                    375: *
                    376:          DO 30 J = K, K + KB - 1
                    377:             IF( IPIV( J ).GT.0 ) THEN
                    378:                IPIV( J ) = IPIV( J ) + K - 1
                    379:             ELSE
                    380:                IPIV( J ) = IPIV( J ) - K + 1
                    381:             END IF
                    382:    30    CONTINUE
                    383: *
                    384: *        Increase K and return to the start of the main loop
                    385: *
                    386:          K = K + KB
                    387:          GO TO 20
                    388: *
                    389:       END IF
                    390: *
                    391:    40 CONTINUE
                    392:       WORK( 1 ) = LWKOPT
                    393:       RETURN
                    394: *
                    395: *     End of ZHETRF_ROOK
                    396: *
                    397:       END

CVSweb interface <joel.bertrand@systella.fr>