Annotation of rpl/lapack/lapack/zhetrf_rk.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHETRF_RK + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_rk.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_rk.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_rk.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
        !            22: *                             INFO )
        !            23: *
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          UPLO
        !            26: *       INTEGER            INFO, LDA, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IPIV( * )
        !            30: *       COMPLEX*16         A( LDA, * ), E ( * ), WORK( * )
        !            31: *       ..
        !            32: *
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *> ZHETRF_RK computes the factorization of a complex Hermitian matrix A
        !            39: *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
        !            40: *>
        !            41: *>    A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
        !            42: *>
        !            43: *> where U (or L) is unit upper (or lower) triangular matrix,
        !            44: *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
        !            45: *> matrix, P**T is the transpose of P, and D is Hermitian and block
        !            46: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
        !            47: *>
        !            48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
        !            49: *> For more information see Further Details section.
        !            50: *> \endverbatim
        !            51: *
        !            52: *  Arguments:
        !            53: *  ==========
        !            54: *
        !            55: *> \param[in] UPLO
        !            56: *> \verbatim
        !            57: *>          UPLO is CHARACTER*1
        !            58: *>          Specifies whether the upper or lower triangular part of the
        !            59: *>          Hermitian matrix A is stored:
        !            60: *>          = 'U':  Upper triangular
        !            61: *>          = 'L':  Lower triangular
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] N
        !            65: *> \verbatim
        !            66: *>          N is INTEGER
        !            67: *>          The order of the matrix A.  N >= 0.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in,out] A
        !            71: *> \verbatim
        !            72: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            73: *>          On entry, the Hermitian matrix A.
        !            74: *>            If UPLO = 'U': the leading N-by-N upper triangular part
        !            75: *>            of A contains the upper triangular part of the matrix A,
        !            76: *>            and the strictly lower triangular part of A is not
        !            77: *>            referenced.
        !            78: *>
        !            79: *>            If UPLO = 'L': the leading N-by-N lower triangular part
        !            80: *>            of A contains the lower triangular part of the matrix A,
        !            81: *>            and the strictly upper triangular part of A is not
        !            82: *>            referenced.
        !            83: *>
        !            84: *>          On exit, contains:
        !            85: *>            a) ONLY diagonal elements of the Hermitian block diagonal
        !            86: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
        !            87: *>               (superdiagonal (or subdiagonal) elements of D
        !            88: *>                are stored on exit in array E), and
        !            89: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
        !            90: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] LDA
        !            94: *> \verbatim
        !            95: *>          LDA is INTEGER
        !            96: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[out] E
        !           100: *> \verbatim
        !           101: *>          E is COMPLEX*16 array, dimension (N)
        !           102: *>          On exit, contains the superdiagonal (or subdiagonal)
        !           103: *>          elements of the Hermitian block diagonal matrix D
        !           104: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
        !           105: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
        !           106: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
        !           107: *>
        !           108: *>          NOTE: For 1-by-1 diagonal block D(k), where
        !           109: *>          1 <= k <= N, the element E(k) is set to 0 in both
        !           110: *>          UPLO = 'U' or UPLO = 'L' cases.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] IPIV
        !           114: *> \verbatim
        !           115: *>          IPIV is INTEGER array, dimension (N)
        !           116: *>          IPIV describes the permutation matrix P in the factorization
        !           117: *>          of matrix A as follows. The absolute value of IPIV(k)
        !           118: *>          represents the index of row and column that were
        !           119: *>          interchanged with the k-th row and column. The value of UPLO
        !           120: *>          describes the order in which the interchanges were applied.
        !           121: *>          Also, the sign of IPIV represents the block structure of
        !           122: *>          the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
        !           123: *>          diagonal blocks which correspond to 1 or 2 interchanges
        !           124: *>          at each factorization step. For more info see Further
        !           125: *>          Details section.
        !           126: *>
        !           127: *>          If UPLO = 'U',
        !           128: *>          ( in factorization order, k decreases from N to 1 ):
        !           129: *>            a) A single positive entry IPIV(k) > 0 means:
        !           130: *>               D(k,k) is a 1-by-1 diagonal block.
        !           131: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
        !           132: *>               interchanged in the matrix A(1:N,1:N);
        !           133: *>               If IPIV(k) = k, no interchange occurred.
        !           134: *>
        !           135: *>            b) A pair of consecutive negative entries
        !           136: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
        !           137: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
        !           138: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
        !           139: *>               1) If -IPIV(k) != k, rows and columns
        !           140: *>                  k and -IPIV(k) were interchanged
        !           141: *>                  in the matrix A(1:N,1:N).
        !           142: *>                  If -IPIV(k) = k, no interchange occurred.
        !           143: *>               2) If -IPIV(k-1) != k-1, rows and columns
        !           144: *>                  k-1 and -IPIV(k-1) were interchanged
        !           145: *>                  in the matrix A(1:N,1:N).
        !           146: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
        !           147: *>
        !           148: *>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
        !           149: *>
        !           150: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
        !           151: *>
        !           152: *>          If UPLO = 'L',
        !           153: *>          ( in factorization order, k increases from 1 to N ):
        !           154: *>            a) A single positive entry IPIV(k) > 0 means:
        !           155: *>               D(k,k) is a 1-by-1 diagonal block.
        !           156: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
        !           157: *>               interchanged in the matrix A(1:N,1:N).
        !           158: *>               If IPIV(k) = k, no interchange occurred.
        !           159: *>
        !           160: *>            b) A pair of consecutive negative entries
        !           161: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
        !           162: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !           163: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
        !           164: *>               1) If -IPIV(k) != k, rows and columns
        !           165: *>                  k and -IPIV(k) were interchanged
        !           166: *>                  in the matrix A(1:N,1:N).
        !           167: *>                  If -IPIV(k) = k, no interchange occurred.
        !           168: *>               2) If -IPIV(k+1) != k+1, rows and columns
        !           169: *>                  k-1 and -IPIV(k-1) were interchanged
        !           170: *>                  in the matrix A(1:N,1:N).
        !           171: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
        !           172: *>
        !           173: *>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
        !           174: *>
        !           175: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[out] WORK
        !           179: *> \verbatim
        !           180: *>          WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ).
        !           181: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[in] LWORK
        !           185: *> \verbatim
        !           186: *>          LWORK is INTEGER
        !           187: *>          The length of WORK.  LWORK >=1.  For best performance
        !           188: *>          LWORK >= N*NB, where NB is the block size returned
        !           189: *>          by ILAENV.
        !           190: *>
        !           191: *>          If LWORK = -1, then a workspace query is assumed;
        !           192: *>          the routine only calculates the optimal size of the WORK
        !           193: *>          array, returns this value as the first entry of the WORK
        !           194: *>          array, and no error message related to LWORK is issued
        !           195: *>          by XERBLA.
        !           196: *> \endverbatim
        !           197: *>
        !           198: *> \param[out] INFO
        !           199: *> \verbatim
        !           200: *>          INFO is INTEGER
        !           201: *>          = 0: successful exit
        !           202: *>
        !           203: *>          < 0: If INFO = -k, the k-th argument had an illegal value
        !           204: *>
        !           205: *>          > 0: If INFO = k, the matrix A is singular, because:
        !           206: *>                 If UPLO = 'U': column k in the upper
        !           207: *>                 triangular part of A contains all zeros.
        !           208: *>                 If UPLO = 'L': column k in the lower
        !           209: *>                 triangular part of A contains all zeros.
        !           210: *>
        !           211: *>               Therefore D(k,k) is exactly zero, and superdiagonal
        !           212: *>               elements of column k of U (or subdiagonal elements of
        !           213: *>               column k of L ) are all zeros. The factorization has
        !           214: *>               been completed, but the block diagonal matrix D is
        !           215: *>               exactly singular, and division by zero will occur if
        !           216: *>               it is used to solve a system of equations.
        !           217: *>
        !           218: *>               NOTE: INFO only stores the first occurrence of
        !           219: *>               a singularity, any subsequent occurrence of singularity
        !           220: *>               is not stored in INFO even though the factorization
        !           221: *>               always completes.
        !           222: *> \endverbatim
        !           223: *
        !           224: *  Authors:
        !           225: *  ========
        !           226: *
        !           227: *> \author Univ. of Tennessee
        !           228: *> \author Univ. of California Berkeley
        !           229: *> \author Univ. of Colorado Denver
        !           230: *> \author NAG Ltd.
        !           231: *
        !           232: *> \date December 2016
        !           233: *
        !           234: *> \ingroup complex16HEcomputational
        !           235: *
        !           236: *> \par Further Details:
        !           237: *  =====================
        !           238: *>
        !           239: *> \verbatim
        !           240: *> TODO: put correct description
        !           241: *> \endverbatim
        !           242: *
        !           243: *> \par Contributors:
        !           244: *  ==================
        !           245: *>
        !           246: *> \verbatim
        !           247: *>
        !           248: *>  December 2016,  Igor Kozachenko,
        !           249: *>                  Computer Science Division,
        !           250: *>                  University of California, Berkeley
        !           251: *>
        !           252: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
        !           253: *>                  School of Mathematics,
        !           254: *>                  University of Manchester
        !           255: *>
        !           256: *> \endverbatim
        !           257: *
        !           258: *  =====================================================================
        !           259:       SUBROUTINE ZHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
        !           260:      $                      INFO )
        !           261: *
        !           262: *  -- LAPACK computational routine (version 3.7.0) --
        !           263: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           264: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           265: *     December 2016
        !           266: *
        !           267: *     .. Scalar Arguments ..
        !           268:       CHARACTER          UPLO
        !           269:       INTEGER            INFO, LDA, LWORK, N
        !           270: *     ..
        !           271: *     .. Array Arguments ..
        !           272:       INTEGER            IPIV( * )
        !           273:       COMPLEX*16         A( LDA, * ), E( * ), WORK( * )
        !           274: *     ..
        !           275: *
        !           276: *  =====================================================================
        !           277: *
        !           278: *     .. Local Scalars ..
        !           279:       LOGICAL            LQUERY, UPPER
        !           280:       INTEGER            I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT,
        !           281:      $                   NB, NBMIN
        !           282: *     ..
        !           283: *     .. External Functions ..
        !           284:       LOGICAL            LSAME
        !           285:       INTEGER            ILAENV
        !           286:       EXTERNAL           LSAME, ILAENV
        !           287: *     ..
        !           288: *     .. External Subroutines ..
        !           289:       EXTERNAL           ZLAHEF_RK, ZHETF2_RK, ZSWAP, XERBLA
        !           290: *     ..
        !           291: *     .. Intrinsic Functions ..
        !           292:       INTRINSIC          ABS, MAX
        !           293: *     ..
        !           294: *     .. Executable Statements ..
        !           295: *
        !           296: *     Test the input parameters.
        !           297: *
        !           298:       INFO = 0
        !           299:       UPPER = LSAME( UPLO, 'U' )
        !           300:       LQUERY = ( LWORK.EQ.-1 )
        !           301:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           302:          INFO = -1
        !           303:       ELSE IF( N.LT.0 ) THEN
        !           304:          INFO = -2
        !           305:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           306:          INFO = -4
        !           307:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
        !           308:          INFO = -8
        !           309:       END IF
        !           310: *
        !           311:       IF( INFO.EQ.0 ) THEN
        !           312: *
        !           313: *        Determine the block size
        !           314: *
        !           315:          NB = ILAENV( 1, 'ZHETRF_RK', UPLO, N, -1, -1, -1 )
        !           316:          LWKOPT = N*NB
        !           317:          WORK( 1 ) = LWKOPT
        !           318:       END IF
        !           319: *
        !           320:       IF( INFO.NE.0 ) THEN
        !           321:          CALL XERBLA( 'ZHETRF_RK', -INFO )
        !           322:          RETURN
        !           323:       ELSE IF( LQUERY ) THEN
        !           324:          RETURN
        !           325:       END IF
        !           326: *
        !           327:       NBMIN = 2
        !           328:       LDWORK = N
        !           329:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
        !           330:          IWS = LDWORK*NB
        !           331:          IF( LWORK.LT.IWS ) THEN
        !           332:             NB = MAX( LWORK / LDWORK, 1 )
        !           333:             NBMIN = MAX( 2, ILAENV( 2, 'ZHETRF_RK',
        !           334:      $                              UPLO, N, -1, -1, -1 ) )
        !           335:          END IF
        !           336:       ELSE
        !           337:          IWS = 1
        !           338:       END IF
        !           339:       IF( NB.LT.NBMIN )
        !           340:      $   NB = N
        !           341: *
        !           342:       IF( UPPER ) THEN
        !           343: *
        !           344: *        Factorize A as U*D*U**T using the upper triangle of A
        !           345: *
        !           346: *        K is the main loop index, decreasing from N to 1 in steps of
        !           347: *        KB, where KB is the number of columns factorized by ZLAHEF_RK;
        !           348: *        KB is either NB or NB-1, or K for the last block
        !           349: *
        !           350:          K = N
        !           351:    10    CONTINUE
        !           352: *
        !           353: *        If K < 1, exit from loop
        !           354: *
        !           355:          IF( K.LT.1 )
        !           356:      $      GO TO 15
        !           357: *
        !           358:          IF( K.GT.NB ) THEN
        !           359: *
        !           360: *           Factorize columns k-kb+1:k of A and use blocked code to
        !           361: *           update columns 1:k-kb
        !           362: *
        !           363:             CALL ZLAHEF_RK( UPLO, K, NB, KB, A, LDA, E,
        !           364:      $                      IPIV, WORK, LDWORK, IINFO )
        !           365:          ELSE
        !           366: *
        !           367: *           Use unblocked code to factorize columns 1:k of A
        !           368: *
        !           369:             CALL ZHETF2_RK( UPLO, K, A, LDA, E, IPIV, IINFO )
        !           370:             KB = K
        !           371:          END IF
        !           372: *
        !           373: *        Set INFO on the first occurrence of a zero pivot
        !           374: *
        !           375:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
        !           376:      $      INFO = IINFO
        !           377: *
        !           378: *        No need to adjust IPIV
        !           379: *
        !           380: *
        !           381: *        Apply permutations to the leading panel 1:k-1
        !           382: *
        !           383: *        Read IPIV from the last block factored, i.e.
        !           384: *        indices  k-kb+1:k and apply row permutations to the
        !           385: *        last k+1 colunms k+1:N after that block
        !           386: *        (We can do the simple loop over IPIV with decrement -1,
        !           387: *        since the ABS value of IPIV( I ) represents the row index
        !           388: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
        !           389: *
        !           390:          IF( K.LT.N ) THEN
        !           391:             DO I = K, ( K - KB + 1 ), -1
        !           392:                IP = ABS( IPIV( I ) )
        !           393:                IF( IP.NE.I ) THEN
        !           394:                   CALL ZSWAP( N-K, A( I, K+1 ), LDA,
        !           395:      $                        A( IP, K+1 ), LDA )
        !           396:                END IF
        !           397:             END DO
        !           398:          END IF
        !           399: *
        !           400: *        Decrease K and return to the start of the main loop
        !           401: *
        !           402:          K = K - KB
        !           403:          GO TO 10
        !           404: *
        !           405: *        This label is the exit from main loop over K decreasing
        !           406: *        from N to 1 in steps of KB
        !           407: *
        !           408:    15    CONTINUE
        !           409: *
        !           410:       ELSE
        !           411: *
        !           412: *        Factorize A as L*D*L**T using the lower triangle of A
        !           413: *
        !           414: *        K is the main loop index, increasing from 1 to N in steps of
        !           415: *        KB, where KB is the number of columns factorized by ZLAHEF_RK;
        !           416: *        KB is either NB or NB-1, or N-K+1 for the last block
        !           417: *
        !           418:          K = 1
        !           419:    20    CONTINUE
        !           420: *
        !           421: *        If K > N, exit from loop
        !           422: *
        !           423:          IF( K.GT.N )
        !           424:      $      GO TO 35
        !           425: *
        !           426:          IF( K.LE.N-NB ) THEN
        !           427: *
        !           428: *           Factorize columns k:k+kb-1 of A and use blocked code to
        !           429: *           update columns k+kb:n
        !           430: *
        !           431:             CALL ZLAHEF_RK( UPLO, N-K+1, NB, KB, A( K, K ), LDA, E( K ),
        !           432:      $                        IPIV( K ), WORK, LDWORK, IINFO )
        !           433: 
        !           434: 
        !           435:          ELSE
        !           436: *
        !           437: *           Use unblocked code to factorize columns k:n of A
        !           438: *
        !           439:             CALL ZHETF2_RK( UPLO, N-K+1, A( K, K ), LDA, E( K ),
        !           440:      $                      IPIV( K ), IINFO )
        !           441:             KB = N - K + 1
        !           442: *
        !           443:          END IF
        !           444: *
        !           445: *        Set INFO on the first occurrence of a zero pivot
        !           446: *
        !           447:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
        !           448:      $      INFO = IINFO + K - 1
        !           449: *
        !           450: *        Adjust IPIV
        !           451: *
        !           452:          DO I = K, K + KB - 1
        !           453:             IF( IPIV( I ).GT.0 ) THEN
        !           454:                IPIV( I ) = IPIV( I ) + K - 1
        !           455:             ELSE
        !           456:                IPIV( I ) = IPIV( I ) - K + 1
        !           457:             END IF
        !           458:          END DO
        !           459: *
        !           460: *        Apply permutations to the leading panel 1:k-1
        !           461: *
        !           462: *        Read IPIV from the last block factored, i.e.
        !           463: *        indices  k:k+kb-1 and apply row permutations to the
        !           464: *        first k-1 colunms 1:k-1 before that block
        !           465: *        (We can do the simple loop over IPIV with increment 1,
        !           466: *        since the ABS value of IPIV( I ) represents the row index
        !           467: *        of the interchange with row i in both 1x1 and 2x2 pivot cases)
        !           468: *
        !           469:          IF( K.GT.1 ) THEN
        !           470:             DO I = K, ( K + KB - 1 ), 1
        !           471:                IP = ABS( IPIV( I ) )
        !           472:                IF( IP.NE.I ) THEN
        !           473:                   CALL ZSWAP( K-1, A( I, 1 ), LDA,
        !           474:      $                        A( IP, 1 ), LDA )
        !           475:                END IF
        !           476:             END DO
        !           477:          END IF
        !           478: *
        !           479: *        Increase K and return to the start of the main loop
        !           480: *
        !           481:          K = K + KB
        !           482:          GO TO 20
        !           483: *
        !           484: *        This label is the exit from main loop over K increasing
        !           485: *        from 1 to N in steps of KB
        !           486: *
        !           487:    35    CONTINUE
        !           488: *
        !           489: *     End Lower
        !           490: *
        !           491:       END IF
        !           492: *
        !           493:       WORK( 1 ) = LWKOPT
        !           494:       RETURN
        !           495: *
        !           496: *     End of ZHETRF_RK
        !           497: *
        !           498:       END

CVSweb interface <joel.bertrand@systella.fr>