File:  [local] / rpl / lapack / lapack / zhetrf_aa.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:20 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZHETRF_AA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRF_AA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_aa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_aa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_aa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER    UPLO
   25: *       INTEGER      N, LDA, LWORK, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER      IPIV( * )
   29: *       COMPLEX*16   A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZHETRF_AA computes the factorization of a complex hermitian matrix A
   38: *> using the Aasen's algorithm.  The form of the factorization is
   39: *>
   40: *>    A = U*T*U**H  or  A = L*T*L**H
   41: *>
   42: *> where U (or L) is a product of permutation and unit upper (lower)
   43: *> triangular matrices, and T is a hermitian tridiagonal matrix.
   44: *>
   45: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension (LDA,N)
   67: *>          On entry, the hermitian matrix A.  If UPLO = 'U', the leading
   68: *>          N-by-N upper triangular part of A contains the upper
   69: *>          triangular part of the matrix A, and the strictly lower
   70: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   71: *>          leading N-by-N lower triangular part of A contains the lower
   72: *>          triangular part of the matrix A, and the strictly upper
   73: *>          triangular part of A is not referenced.
   74: *>
   75: *>          On exit, the tridiagonal matrix is stored in the diagonals
   76: *>          and the subdiagonals of A just below (or above) the diagonals,
   77: *>          and L is stored below (or above) the subdiaonals, when UPLO
   78: *>          is 'L' (or 'U').
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[out] IPIV
   88: *> \verbatim
   89: *>          IPIV is INTEGER array, dimension (N)
   90: *>          On exit, it contains the details of the interchanges, i.e.,
   91: *>          the row and column k of A were interchanged with the
   92: *>          row and column IPIV(k).
   93: *> \endverbatim
   94: *>
   95: *> \param[out] WORK
   96: *> \verbatim
   97: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   98: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LWORK
  102: *> \verbatim
  103: *>          LWORK is INTEGER
  104: *>          The length of WORK. LWORK >= MAX(1,2*N). For optimum performance
  105: *>          LWORK >= N*(1+NB), where NB is the optimal blocksize.
  106: *>
  107: *>          If LWORK = -1, then a workspace query is assumed; the routine
  108: *>          only calculates the optimal size of the WORK array, returns
  109: *>          this value as the first entry of the WORK array, and no error
  110: *>          message related to LWORK is issued by XERBLA.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0:  successful exit
  117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  118: *> \endverbatim
  119: *
  120: *  Authors:
  121: *  ========
  122: *
  123: *> \author Univ. of Tennessee
  124: *> \author Univ. of California Berkeley
  125: *> \author Univ. of Colorado Denver
  126: *> \author NAG Ltd.
  127: *
  128: *> \date November 2017
  129: *
  130: *> \ingroup complex16HEcomputational
  131: *
  132: *  =====================================================================
  133:       SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
  134: *
  135: *  -- LAPACK computational routine (version 3.8.0) --
  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138: *     November 2017
  139: *
  140:       IMPLICIT NONE
  141: *
  142: *     .. Scalar Arguments ..
  143:       CHARACTER    UPLO
  144:       INTEGER      N, LDA, LWORK, INFO
  145: *     ..
  146: *     .. Array Arguments ..
  147:       INTEGER      IPIV( * )
  148:       COMPLEX*16   A( LDA, * ), WORK( * )
  149: *     ..
  150: *
  151: *  =====================================================================
  152: *     .. Parameters ..
  153:       COMPLEX*16   ZERO, ONE
  154:       PARAMETER    ( ZERO = (0.0D+0, 0.0D+0), ONE = (1.0D+0, 0.0D+0) )
  155: *
  156: *     .. Local Scalars ..
  157:       LOGICAL      LQUERY, UPPER
  158:       INTEGER      J, LWKOPT
  159:       INTEGER      NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  160:       COMPLEX*16   ALPHA
  161: *     ..
  162: *     .. External Functions ..
  163:       LOGICAL      LSAME
  164:       INTEGER      ILAENV
  165:       EXTERNAL     LSAME, ILAENV
  166: *     ..
  167: *     .. External Subroutines ..
  168:       EXTERNAL     ZLAHEF_AA, ZGEMM, ZGEMV, ZCOPY, ZSCAL, ZSWAP, XERBLA
  169: *     ..
  170: *     .. Intrinsic Functions ..
  171:       INTRINSIC    DBLE, DCONJG, MAX
  172: *     ..
  173: *     .. Executable Statements ..
  174: *
  175: *     Determine the block size
  176: *
  177:       NB = ILAENV( 1, 'ZHETRF_AA', UPLO, N, -1, -1, -1 )
  178: *
  179: *     Test the input parameters.
  180: *
  181:       INFO = 0
  182:       UPPER = LSAME( UPLO, 'U' )
  183:       LQUERY = ( LWORK.EQ.-1 )
  184:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  185:          INFO = -1
  186:       ELSE IF( N.LT.0 ) THEN
  187:          INFO = -2
  188:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  189:          INFO = -4
  190:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  191:          INFO = -7
  192:       END IF
  193: *
  194:       IF( INFO.EQ.0 ) THEN
  195:          LWKOPT = (NB+1)*N
  196:          WORK( 1 ) = LWKOPT
  197:       END IF
  198: *
  199:       IF( INFO.NE.0 ) THEN
  200:          CALL XERBLA( 'ZHETRF_AA', -INFO )
  201:          RETURN
  202:       ELSE IF( LQUERY ) THEN
  203:          RETURN
  204:       END IF
  205: *
  206: *     Quick return
  207: *
  208:       IF ( N.EQ.0 ) THEN
  209:           RETURN
  210:       ENDIF
  211:       IPIV( 1 ) = 1
  212:       IF ( N.EQ.1 ) THEN
  213:          A( 1, 1 ) = DBLE( A( 1, 1 ) )
  214:          RETURN
  215:       END IF
  216: *
  217: *     Adjust block size based on the workspace size
  218: *
  219:       IF( LWORK.LT.((1+NB)*N) ) THEN
  220:          NB = ( LWORK-N ) / N
  221:       END IF
  222: *
  223:       IF( UPPER ) THEN
  224: *
  225: *        .....................................................
  226: *        Factorize A as L*D*L**H using the upper triangle of A
  227: *        .....................................................
  228: *
  229: *        copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  230: *
  231:          CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  232: *
  233: *        J is the main loop index, increasing from 1 to N in steps of
  234: *        JB, where JB is the number of columns factorized by ZLAHEF;
  235: *        JB is either NB, or N-J+1 for the last block
  236: *
  237:          J = 0
  238:  10      CONTINUE
  239:          IF( J.GE.N )
  240:      $      GO TO 20
  241: *
  242: *        each step of the main loop
  243: *         J is the last column of the previous panel
  244: *         J1 is the first column of the current panel
  245: *         K1 identifies if the previous column of the panel has been
  246: *          explicitly stored, e.g., K1=1 for the first panel, and
  247: *          K1=0 for the rest
  248: *
  249:          J1 = J + 1
  250:          JB = MIN( N-J1+1, NB )
  251:          K1 = MAX(1, J)-J
  252: *
  253: *        Panel factorization
  254: *
  255:          CALL ZLAHEF_AA( UPLO, 2-K1, N-J, JB,
  256:      $                      A( MAX(1, J), J+1 ), LDA,
  257:      $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  258: *
  259: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  260: *
  261:          DO J2 = J+2, MIN(N, J+JB+1)
  262:             IPIV( J2 ) = IPIV( J2 ) + J
  263:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  264:                CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
  265:      $                              A( 1, IPIV(J2) ), 1 )
  266:             END IF
  267:          END DO
  268:          J = J + JB
  269: *
  270: *        Trailing submatrix update, where
  271: *         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  272: *         WORK stores the current block of the auxiriarly matrix H
  273: *
  274:          IF( J.LT.N ) THEN
  275: *
  276: *          if the first panel and JB=1 (NB=1), then nothing to do
  277: *
  278:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  279: *
  280: *              Merge rank-1 update with BLAS-3 update
  281: *
  282:                ALPHA = DCONJG( A( J, J+1 ) )
  283:                A( J, J+1 ) = ONE
  284:                CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
  285:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  286:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  287: *
  288: *              K1 identifies if the previous column of the panel has been
  289: *               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
  290: *               and K1=1 and K2=0 for the rest
  291: *
  292:                IF( J1.GT.1 ) THEN
  293: *
  294: *                 Not first panel
  295: *
  296:                   K2 = 1
  297:                ELSE
  298: *
  299: *                 First panel
  300: *
  301:                   K2 = 0
  302: *
  303: *                 First update skips the first column
  304: *
  305:                   JB = JB - 1
  306:                END IF
  307: *
  308:                DO J2 = J+1, N, NB
  309:                   NJ = MIN( NB, N-J2+1 )
  310: *
  311: *                 Update (J2, J2) diagonal block with ZGEMV
  312: *
  313:                   J3 = J2
  314:                   DO MJ = NJ-1, 1, -1
  315:                      CALL ZGEMM( 'Conjugate transpose', 'Transpose',
  316:      $                            1, MJ, JB+1,
  317:      $                           -ONE, A( J1-K2, J3 ), LDA,
  318:      $                                 WORK( (J3-J1+1)+K1*N ), N,
  319:      $                            ONE, A( J3, J3 ), LDA )
  320:                      J3 = J3 + 1
  321:                   END DO
  322: *
  323: *                 Update off-diagonal block of J2-th block row with ZGEMM
  324: *
  325:                   CALL ZGEMM( 'Conjugate transpose', 'Transpose',
  326:      $                        NJ, N-J3+1, JB+1,
  327:      $                       -ONE, A( J1-K2, J2 ), LDA,
  328:      $                             WORK( (J3-J1+1)+K1*N ), N,
  329:      $                        ONE, A( J2, J3 ), LDA )
  330:                END DO
  331: *
  332: *              Recover T( J, J+1 )
  333: *
  334:                A( J, J+1 ) = DCONJG( ALPHA )
  335:             END IF
  336: *
  337: *           WORK(J+1, 1) stores H(J+1, 1)
  338: *
  339:             CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  340:          END IF
  341:          GO TO 10
  342:       ELSE
  343: *
  344: *        .....................................................
  345: *        Factorize A as L*D*L**H using the lower triangle of A
  346: *        .....................................................
  347: *
  348: *        copy first column A(1:N, 1) into H(1:N, 1)
  349: *         (stored in WORK(1:N))
  350: *
  351:          CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  352: *
  353: *        J is the main loop index, increasing from 1 to N in steps of
  354: *        JB, where JB is the number of columns factorized by ZLAHEF;
  355: *        JB is either NB, or N-J+1 for the last block
  356: *
  357:          J = 0
  358:  11      CONTINUE
  359:          IF( J.GE.N )
  360:      $      GO TO 20
  361: *
  362: *        each step of the main loop
  363: *         J is the last column of the previous panel
  364: *         J1 is the first column of the current panel
  365: *         K1 identifies if the previous column of the panel has been
  366: *          explicitly stored, e.g., K1=1 for the first panel, and
  367: *          K1=0 for the rest
  368: *
  369:          J1 = J+1
  370:          JB = MIN( N-J1+1, NB )
  371:          K1 = MAX(1, J)-J
  372: *
  373: *        Panel factorization
  374: *
  375:          CALL ZLAHEF_AA( UPLO, 2-K1, N-J, JB,
  376:      $                      A( J+1, MAX(1, J) ), LDA,
  377:      $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  378: *
  379: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  380: *
  381:          DO J2 = J+2, MIN(N, J+JB+1)
  382:             IPIV( J2 ) = IPIV( J2 ) + J
  383:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  384:                CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
  385:      $                              A( IPIV(J2), 1 ), LDA )
  386:             END IF
  387:          END DO
  388:          J = J + JB
  389: *
  390: *        Trailing submatrix update, where
  391: *          A(J2+1, J1-1) stores L(J2+1, J1) and
  392: *          WORK(J2+1, 1) stores H(J2+1, 1)
  393: *
  394:          IF( J.LT.N ) THEN
  395: *
  396: *          if the first panel and JB=1 (NB=1), then nothing to do
  397: *
  398:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  399: *
  400: *              Merge rank-1 update with BLAS-3 update
  401: *
  402:                ALPHA = DCONJG( A( J+1, J ) )
  403:                A( J+1, J ) = ONE
  404:                CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
  405:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  406:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  407: *
  408: *              K1 identifies if the previous column of the panel has been
  409: *               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
  410: *               and K1=1 and K2=0 for the rest
  411: *
  412:                IF( J1.GT.1 ) THEN
  413: *
  414: *                 Not first panel
  415: *
  416:                   K2 = 1
  417:                ELSE
  418: *
  419: *                 First panel
  420: *
  421:                   K2 = 0
  422: *
  423: *                 First update skips the first column
  424: *
  425:                   JB = JB - 1
  426:                END IF
  427: *
  428:                DO J2 = J+1, N, NB
  429:                   NJ = MIN( NB, N-J2+1 )
  430: *
  431: *                 Update (J2, J2) diagonal block with ZGEMV
  432: *
  433:                   J3 = J2
  434:                   DO MJ = NJ-1, 1, -1
  435:                      CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  436:      $                           MJ, 1, JB+1,
  437:      $                          -ONE, WORK( (J3-J1+1)+K1*N ), N,
  438:      $                                A( J3, J1-K2 ), LDA,
  439:      $                           ONE, A( J3, J3 ), LDA )
  440:                      J3 = J3 + 1
  441:                   END DO
  442: *
  443: *                 Update off-diagonal block of J2-th block column with ZGEMM
  444: *
  445:                   CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  446:      $                        N-J3+1, NJ, JB+1,
  447:      $                       -ONE, WORK( (J3-J1+1)+K1*N ), N,
  448:      $                             A( J2, J1-K2 ), LDA,
  449:      $                        ONE, A( J3, J2 ), LDA )
  450:                END DO
  451: *
  452: *              Recover T( J+1, J )
  453: *
  454:                A( J+1, J ) = DCONJG( ALPHA )
  455:             END IF
  456: *
  457: *           WORK(J+1, 1) stores H(J+1, 1)
  458: *
  459:             CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  460:          END IF
  461:          GO TO 11
  462:       END IF
  463: *
  464:    20 CONTINUE
  465:       RETURN
  466: *
  467: *     End of ZHETRF_AA
  468: *
  469:       END

CVSweb interface <joel.bertrand@systella.fr>