File:  [local] / rpl / lapack / lapack / zhetrf.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:25 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHETRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, LWORK, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHETRF computes the factorization of a complex Hermitian matrix A
   39: *> using the Bunch-Kaufman diagonal pivoting method.  The form of the
   40: *> factorization is
   41: *>
   42: *>    A = U*D*U**H  or  A = L*D*L**H
   43: *>
   44: *> where U (or L) is a product of permutation and unit upper (lower)
   45: *> triangular matrices, and D is Hermitian and block diagonal with
   46: *> 1-by-1 and 2-by-2 diagonal blocks.
   47: *>
   48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] UPLO
   55: *> \verbatim
   56: *>          UPLO is CHARACTER*1
   57: *>          = 'U':  Upper triangle of A is stored;
   58: *>          = 'L':  Lower triangle of A is stored.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] N
   62: *> \verbatim
   63: *>          N is INTEGER
   64: *>          The order of the matrix A.  N >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in,out] A
   68: *> \verbatim
   69: *>          A is COMPLEX*16 array, dimension (LDA,N)
   70: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   71: *>          N-by-N upper triangular part of A contains the upper
   72: *>          triangular part of the matrix A, and the strictly lower
   73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   74: *>          leading N-by-N lower triangular part of A contains the lower
   75: *>          triangular part of the matrix A, and the strictly upper
   76: *>          triangular part of A is not referenced.
   77: *>
   78: *>          On exit, the block diagonal matrix D and the multipliers used
   79: *>          to obtain the factor U or L (see below for further details).
   80: *> \endverbatim
   81: *>
   82: *> \param[in] LDA
   83: *> \verbatim
   84: *>          LDA is INTEGER
   85: *>          The leading dimension of the array A.  LDA >= max(1,N).
   86: *> \endverbatim
   87: *>
   88: *> \param[out] IPIV
   89: *> \verbatim
   90: *>          IPIV is INTEGER array, dimension (N)
   91: *>          Details of the interchanges and the block structure of D.
   92: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   93: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
   94: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   95: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   96: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   97: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   98: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   99: *> \endverbatim
  100: *>
  101: *> \param[out] WORK
  102: *> \verbatim
  103: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  104: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LWORK
  108: *> \verbatim
  109: *>          LWORK is INTEGER
  110: *>          The length of WORK.  LWORK >=1.  For best performance
  111: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
  112: *> \endverbatim
  113: *>
  114: *> \param[out] INFO
  115: *> \verbatim
  116: *>          INFO is INTEGER
  117: *>          = 0:  successful exit
  118: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  119: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
  120: *>                has been completed, but the block diagonal matrix D is
  121: *>                exactly singular, and division by zero will occur if it
  122: *>                is used to solve a system of equations.
  123: *> \endverbatim
  124: *
  125: *  Authors:
  126: *  ========
  127: *
  128: *> \author Univ. of Tennessee
  129: *> \author Univ. of California Berkeley
  130: *> \author Univ. of Colorado Denver
  131: *> \author NAG Ltd.
  132: *
  133: *> \ingroup complex16HEcomputational
  134: *
  135: *> \par Further Details:
  136: *  =====================
  137: *>
  138: *> \verbatim
  139: *>
  140: *>  If UPLO = 'U', then A = U*D*U**H, where
  141: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  142: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  143: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  144: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  145: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  146: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  147: *>
  148: *>             (   I    v    0   )   k-s
  149: *>     U(k) =  (   0    I    0   )   s
  150: *>             (   0    0    I   )   n-k
  151: *>                k-s   s   n-k
  152: *>
  153: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  154: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  155: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  156: *>
  157: *>  If UPLO = 'L', then A = L*D*L**H, where
  158: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  159: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  160: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  161: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  162: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  163: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  164: *>
  165: *>             (   I    0     0   )  k-1
  166: *>     L(k) =  (   0    I     0   )  s
  167: *>             (   0    v     I   )  n-k-s+1
  168: *>                k-1   s  n-k-s+1
  169: *>
  170: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  171: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  172: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  173: *> \endverbatim
  174: *>
  175: *  =====================================================================
  176:       SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  177: *
  178: *  -- LAPACK computational routine --
  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181: *
  182: *     .. Scalar Arguments ..
  183:       CHARACTER          UPLO
  184:       INTEGER            INFO, LDA, LWORK, N
  185: *     ..
  186: *     .. Array Arguments ..
  187:       INTEGER            IPIV( * )
  188:       COMPLEX*16         A( LDA, * ), WORK( * )
  189: *     ..
  190: *
  191: *  =====================================================================
  192: *
  193: *     .. Local Scalars ..
  194:       LOGICAL            LQUERY, UPPER
  195:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
  196: *     ..
  197: *     .. External Functions ..
  198:       LOGICAL            LSAME
  199:       INTEGER            ILAENV
  200:       EXTERNAL           LSAME, ILAENV
  201: *     ..
  202: *     .. External Subroutines ..
  203:       EXTERNAL           XERBLA, ZHETF2, ZLAHEF
  204: *     ..
  205: *     .. Intrinsic Functions ..
  206:       INTRINSIC          MAX
  207: *     ..
  208: *     .. Executable Statements ..
  209: *
  210: *     Test the input parameters.
  211: *
  212:       INFO = 0
  213:       UPPER = LSAME( UPLO, 'U' )
  214:       LQUERY = ( LWORK.EQ.-1 )
  215:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  216:          INFO = -1
  217:       ELSE IF( N.LT.0 ) THEN
  218:          INFO = -2
  219:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  220:          INFO = -4
  221:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  222:          INFO = -7
  223:       END IF
  224: *
  225:       IF( INFO.EQ.0 ) THEN
  226: *
  227: *        Determine the block size
  228: *
  229:          NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
  230:          LWKOPT = N*NB
  231:          WORK( 1 ) = LWKOPT
  232:       END IF
  233: *
  234:       IF( INFO.NE.0 ) THEN
  235:          CALL XERBLA( 'ZHETRF', -INFO )
  236:          RETURN
  237:       ELSE IF( LQUERY ) THEN
  238:          RETURN
  239:       END IF
  240: *
  241:       NBMIN = 2
  242:       LDWORK = N
  243:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
  244:          IWS = LDWORK*NB
  245:          IF( LWORK.LT.IWS ) THEN
  246:             NB = MAX( LWORK / LDWORK, 1 )
  247:             NBMIN = MAX( 2, ILAENV( 2, 'ZHETRF', UPLO, N, -1, -1, -1 ) )
  248:          END IF
  249:       ELSE
  250:          IWS = 1
  251:       END IF
  252:       IF( NB.LT.NBMIN )
  253:      $   NB = N
  254: *
  255:       IF( UPPER ) THEN
  256: *
  257: *        Factorize A as U*D*U**H using the upper triangle of A
  258: *
  259: *        K is the main loop index, decreasing from N to 1 in steps of
  260: *        KB, where KB is the number of columns factorized by ZLAHEF;
  261: *        KB is either NB or NB-1, or K for the last block
  262: *
  263:          K = N
  264:    10    CONTINUE
  265: *
  266: *        If K < 1, exit from loop
  267: *
  268:          IF( K.LT.1 )
  269:      $      GO TO 40
  270: *
  271:          IF( K.GT.NB ) THEN
  272: *
  273: *           Factorize columns k-kb+1:k of A and use blocked code to
  274: *           update columns 1:k-kb
  275: *
  276:             CALL ZLAHEF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
  277:          ELSE
  278: *
  279: *           Use unblocked code to factorize columns 1:k of A
  280: *
  281:             CALL ZHETF2( UPLO, K, A, LDA, IPIV, IINFO )
  282:             KB = K
  283:          END IF
  284: *
  285: *        Set INFO on the first occurrence of a zero pivot
  286: *
  287:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  288:      $      INFO = IINFO
  289: *
  290: *        Decrease K and return to the start of the main loop
  291: *
  292:          K = K - KB
  293:          GO TO 10
  294: *
  295:       ELSE
  296: *
  297: *        Factorize A as L*D*L**H using the lower triangle of A
  298: *
  299: *        K is the main loop index, increasing from 1 to N in steps of
  300: *        KB, where KB is the number of columns factorized by ZLAHEF;
  301: *        KB is either NB or NB-1, or N-K+1 for the last block
  302: *
  303:          K = 1
  304:    20    CONTINUE
  305: *
  306: *        If K > N, exit from loop
  307: *
  308:          IF( K.GT.N )
  309:      $      GO TO 40
  310: *
  311:          IF( K.LE.N-NB ) THEN
  312: *
  313: *           Factorize columns k:k+kb-1 of A and use blocked code to
  314: *           update columns k+kb:n
  315: *
  316:             CALL ZLAHEF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
  317:      $                   WORK, N, IINFO )
  318:          ELSE
  319: *
  320: *           Use unblocked code to factorize columns k:n of A
  321: *
  322:             CALL ZHETF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
  323:             KB = N - K + 1
  324:          END IF
  325: *
  326: *        Set INFO on the first occurrence of a zero pivot
  327: *
  328:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  329:      $      INFO = IINFO + K - 1
  330: *
  331: *        Adjust IPIV
  332: *
  333:          DO 30 J = K, K + KB - 1
  334:             IF( IPIV( J ).GT.0 ) THEN
  335:                IPIV( J ) = IPIV( J ) + K - 1
  336:             ELSE
  337:                IPIV( J ) = IPIV( J ) - K + 1
  338:             END IF
  339:    30    CONTINUE
  340: *
  341: *        Increase K and return to the start of the main loop
  342: *
  343:          K = K + KB
  344:          GO TO 20
  345: *
  346:       END IF
  347: *
  348:    40 CONTINUE
  349:       WORK( 1 ) = LWKOPT
  350:       RETURN
  351: *
  352: *     End of ZHETRF
  353: *
  354:       END

CVSweb interface <joel.bertrand@systella.fr>