Annotation of rpl/lapack/lapack/zhetrf.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZHETRF
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHETRF + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       CHARACTER          UPLO
        !            25: *       INTEGER            INFO, LDA, LWORK, N
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            IPIV( * )
        !            29: *       COMPLEX*16         A( LDA, * ), WORK( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> ZHETRF computes the factorization of a complex Hermitian matrix A
        !            39: *> using the Bunch-Kaufman diagonal pivoting method.  The form of the
        !            40: *> factorization is
        !            41: *>
        !            42: *>    A = U*D*U**H  or  A = L*D*L**H
        !            43: *>
        !            44: *> where U (or L) is a product of permutation and unit upper (lower)
        !            45: *> triangular matrices, and D is Hermitian and block diagonal with
        !            46: *> 1-by-1 and 2-by-2 diagonal blocks.
        !            47: *>
        !            48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
        !            49: *> \endverbatim
        !            50: *
        !            51: *  Arguments:
        !            52: *  ==========
        !            53: *
        !            54: *> \param[in] UPLO
        !            55: *> \verbatim
        !            56: *>          UPLO is CHARACTER*1
        !            57: *>          = 'U':  Upper triangle of A is stored;
        !            58: *>          = 'L':  Lower triangle of A is stored.
        !            59: *> \endverbatim
        !            60: *>
        !            61: *> \param[in] N
        !            62: *> \verbatim
        !            63: *>          N is INTEGER
        !            64: *>          The order of the matrix A.  N >= 0.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in,out] A
        !            68: *> \verbatim
        !            69: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            70: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
        !            71: *>          N-by-N upper triangular part of A contains the upper
        !            72: *>          triangular part of the matrix A, and the strictly lower
        !            73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !            74: *>          leading N-by-N lower triangular part of A contains the lower
        !            75: *>          triangular part of the matrix A, and the strictly upper
        !            76: *>          triangular part of A is not referenced.
        !            77: *>
        !            78: *>          On exit, the block diagonal matrix D and the multipliers used
        !            79: *>          to obtain the factor U or L (see below for further details).
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] LDA
        !            83: *> \verbatim
        !            84: *>          LDA is INTEGER
        !            85: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[out] IPIV
        !            89: *> \verbatim
        !            90: *>          IPIV is INTEGER array, dimension (N)
        !            91: *>          Details of the interchanges and the block structure of D.
        !            92: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
        !            93: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
        !            94: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
        !            95: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
        !            96: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
        !            97: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
        !            98: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[out] WORK
        !           102: *> \verbatim
        !           103: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           104: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LWORK
        !           108: *> \verbatim
        !           109: *>          LWORK is INTEGER
        !           110: *>          The length of WORK.  LWORK >=1.  For best performance
        !           111: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[out] INFO
        !           115: *> \verbatim
        !           116: *>          INFO is INTEGER
        !           117: *>          = 0:  successful exit
        !           118: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           119: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
        !           120: *>                has been completed, but the block diagonal matrix D is
        !           121: *>                exactly singular, and division by zero will occur if it
        !           122: *>                is used to solve a system of equations.
        !           123: *> \endverbatim
        !           124: *
        !           125: *  Authors:
        !           126: *  ========
        !           127: *
        !           128: *> \author Univ. of Tennessee 
        !           129: *> \author Univ. of California Berkeley 
        !           130: *> \author Univ. of Colorado Denver 
        !           131: *> \author NAG Ltd. 
        !           132: *
        !           133: *> \date November 2011
        !           134: *
        !           135: *> \ingroup complex16HEcomputational
        !           136: *
        !           137: *> \par Further Details:
        !           138: *  =====================
        !           139: *>
        !           140: *> \verbatim
        !           141: *>
        !           142: *>  If UPLO = 'U', then A = U*D*U**H, where
        !           143: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
        !           144: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
        !           145: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           146: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           147: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
        !           148: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           149: *>
        !           150: *>             (   I    v    0   )   k-s
        !           151: *>     U(k) =  (   0    I    0   )   s
        !           152: *>             (   0    0    I   )   n-k
        !           153: *>                k-s   s   n-k
        !           154: *>
        !           155: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
        !           156: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
        !           157: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
        !           158: *>
        !           159: *>  If UPLO = 'L', then A = L*D*L**H, where
        !           160: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
        !           161: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
        !           162: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           163: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           164: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
        !           165: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           166: *>
        !           167: *>             (   I    0     0   )  k-1
        !           168: *>     L(k) =  (   0    I     0   )  s
        !           169: *>             (   0    v     I   )  n-k-s+1
        !           170: *>                k-1   s  n-k-s+1
        !           171: *>
        !           172: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
        !           173: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
        !           174: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
        !           175: *> \endverbatim
        !           176: *>
        !           177: *  =====================================================================
1.1       bertrand  178:       SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    179: *
1.9     ! bertrand  180: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  183: *     November 2011
1.1       bertrand  184: *
                    185: *     .. Scalar Arguments ..
                    186:       CHARACTER          UPLO
                    187:       INTEGER            INFO, LDA, LWORK, N
                    188: *     ..
                    189: *     .. Array Arguments ..
                    190:       INTEGER            IPIV( * )
                    191:       COMPLEX*16         A( LDA, * ), WORK( * )
                    192: *     ..
                    193: *
                    194: *  =====================================================================
                    195: *
                    196: *     .. Local Scalars ..
                    197:       LOGICAL            LQUERY, UPPER
                    198:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    199: *     ..
                    200: *     .. External Functions ..
                    201:       LOGICAL            LSAME
                    202:       INTEGER            ILAENV
                    203:       EXTERNAL           LSAME, ILAENV
                    204: *     ..
                    205: *     .. External Subroutines ..
                    206:       EXTERNAL           XERBLA, ZHETF2, ZLAHEF
                    207: *     ..
                    208: *     .. Intrinsic Functions ..
                    209:       INTRINSIC          MAX
                    210: *     ..
                    211: *     .. Executable Statements ..
                    212: *
                    213: *     Test the input parameters.
                    214: *
                    215:       INFO = 0
                    216:       UPPER = LSAME( UPLO, 'U' )
                    217:       LQUERY = ( LWORK.EQ.-1 )
                    218:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    219:          INFO = -1
                    220:       ELSE IF( N.LT.0 ) THEN
                    221:          INFO = -2
                    222:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    223:          INFO = -4
                    224:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    225:          INFO = -7
                    226:       END IF
                    227: *
                    228:       IF( INFO.EQ.0 ) THEN
                    229: *
                    230: *        Determine the block size
                    231: *
                    232:          NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
                    233:          LWKOPT = N*NB
                    234:          WORK( 1 ) = LWKOPT
                    235:       END IF
                    236: *
                    237:       IF( INFO.NE.0 ) THEN
                    238:          CALL XERBLA( 'ZHETRF', -INFO )
                    239:          RETURN
                    240:       ELSE IF( LQUERY ) THEN
                    241:          RETURN
                    242:       END IF
                    243: *
                    244:       NBMIN = 2
                    245:       LDWORK = N
                    246:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    247:          IWS = LDWORK*NB
                    248:          IF( LWORK.LT.IWS ) THEN
                    249:             NB = MAX( LWORK / LDWORK, 1 )
                    250:             NBMIN = MAX( 2, ILAENV( 2, 'ZHETRF', UPLO, N, -1, -1, -1 ) )
                    251:          END IF
                    252:       ELSE
                    253:          IWS = 1
                    254:       END IF
                    255:       IF( NB.LT.NBMIN )
                    256:      $   NB = N
                    257: *
                    258:       IF( UPPER ) THEN
                    259: *
1.8       bertrand  260: *        Factorize A as U*D*U**H using the upper triangle of A
1.1       bertrand  261: *
                    262: *        K is the main loop index, decreasing from N to 1 in steps of
                    263: *        KB, where KB is the number of columns factorized by ZLAHEF;
                    264: *        KB is either NB or NB-1, or K for the last block
                    265: *
                    266:          K = N
                    267:    10    CONTINUE
                    268: *
                    269: *        If K < 1, exit from loop
                    270: *
                    271:          IF( K.LT.1 )
                    272:      $      GO TO 40
                    273: *
                    274:          IF( K.GT.NB ) THEN
                    275: *
                    276: *           Factorize columns k-kb+1:k of A and use blocked code to
                    277: *           update columns 1:k-kb
                    278: *
                    279:             CALL ZLAHEF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
                    280:          ELSE
                    281: *
                    282: *           Use unblocked code to factorize columns 1:k of A
                    283: *
                    284:             CALL ZHETF2( UPLO, K, A, LDA, IPIV, IINFO )
                    285:             KB = K
                    286:          END IF
                    287: *
                    288: *        Set INFO on the first occurrence of a zero pivot
                    289: *
                    290:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    291:      $      INFO = IINFO
                    292: *
                    293: *        Decrease K and return to the start of the main loop
                    294: *
                    295:          K = K - KB
                    296:          GO TO 10
                    297: *
                    298:       ELSE
                    299: *
1.8       bertrand  300: *        Factorize A as L*D*L**H using the lower triangle of A
1.1       bertrand  301: *
                    302: *        K is the main loop index, increasing from 1 to N in steps of
                    303: *        KB, where KB is the number of columns factorized by ZLAHEF;
                    304: *        KB is either NB or NB-1, or N-K+1 for the last block
                    305: *
                    306:          K = 1
                    307:    20    CONTINUE
                    308: *
                    309: *        If K > N, exit from loop
                    310: *
                    311:          IF( K.GT.N )
                    312:      $      GO TO 40
                    313: *
                    314:          IF( K.LE.N-NB ) THEN
                    315: *
                    316: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    317: *           update columns k+kb:n
                    318: *
                    319:             CALL ZLAHEF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
                    320:      $                   WORK, N, IINFO )
                    321:          ELSE
                    322: *
                    323: *           Use unblocked code to factorize columns k:n of A
                    324: *
                    325:             CALL ZHETF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
                    326:             KB = N - K + 1
                    327:          END IF
                    328: *
                    329: *        Set INFO on the first occurrence of a zero pivot
                    330: *
                    331:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    332:      $      INFO = IINFO + K - 1
                    333: *
                    334: *        Adjust IPIV
                    335: *
                    336:          DO 30 J = K, K + KB - 1
                    337:             IF( IPIV( J ).GT.0 ) THEN
                    338:                IPIV( J ) = IPIV( J ) + K - 1
                    339:             ELSE
                    340:                IPIV( J ) = IPIV( J ) - K + 1
                    341:             END IF
                    342:    30    CONTINUE
                    343: *
                    344: *        Increase K and return to the start of the main loop
                    345: *
                    346:          K = K + KB
                    347:          GO TO 20
                    348: *
                    349:       END IF
                    350: *
                    351:    40 CONTINUE
                    352:       WORK( 1 ) = LWKOPT
                    353:       RETURN
                    354: *
                    355: *     End of ZHETRF
                    356: *
                    357:       END

CVSweb interface <joel.bertrand@systella.fr>