Annotation of rpl/lapack/lapack/zhetrf.f, revision 1.16

1.9       bertrand    1: *> \brief \b ZHETRF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZHETRF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
1.15      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LWORK, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     30: *       ..
1.15      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZHETRF computes the factorization of a complex Hermitian matrix A
                     39: *> using the Bunch-Kaufman diagonal pivoting method.  The form of the
                     40: *> factorization is
                     41: *>
                     42: *>    A = U*D*U**H  or  A = L*D*L**H
                     43: *>
                     44: *> where U (or L) is a product of permutation and unit upper (lower)
                     45: *> triangular matrices, and D is Hermitian and block diagonal with
                     46: *> 1-by-1 and 2-by-2 diagonal blocks.
                     47: *>
                     48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] UPLO
                     55: *> \verbatim
                     56: *>          UPLO is CHARACTER*1
                     57: *>          = 'U':  Upper triangle of A is stored;
                     58: *>          = 'L':  Lower triangle of A is stored.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in,out] A
                     68: *> \verbatim
                     69: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     70: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     71: *>          N-by-N upper triangular part of A contains the upper
                     72: *>          triangular part of the matrix A, and the strictly lower
                     73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     74: *>          leading N-by-N lower triangular part of A contains the lower
                     75: *>          triangular part of the matrix A, and the strictly upper
                     76: *>          triangular part of A is not referenced.
                     77: *>
                     78: *>          On exit, the block diagonal matrix D and the multipliers used
                     79: *>          to obtain the factor U or L (see below for further details).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] IPIV
                     89: *> \verbatim
                     90: *>          IPIV is INTEGER array, dimension (N)
                     91: *>          Details of the interchanges and the block structure of D.
                     92: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     93: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
                     94: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     95: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     96: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     97: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     98: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] WORK
                    102: *> \verbatim
                    103: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    104: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LWORK
                    108: *> \verbatim
                    109: *>          LWORK is INTEGER
                    110: *>          The length of WORK.  LWORK >=1.  For best performance
                    111: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[out] INFO
                    115: *> \verbatim
                    116: *>          INFO is INTEGER
                    117: *>          = 0:  successful exit
                    118: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    119: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                    120: *>                has been completed, but the block diagonal matrix D is
                    121: *>                exactly singular, and division by zero will occur if it
                    122: *>                is used to solve a system of equations.
                    123: *> \endverbatim
                    124: *
                    125: *  Authors:
                    126: *  ========
                    127: *
1.15      bertrand  128: *> \author Univ. of Tennessee
                    129: *> \author Univ. of California Berkeley
                    130: *> \author Univ. of Colorado Denver
                    131: *> \author NAG Ltd.
1.9       bertrand  132: *
1.15      bertrand  133: *> \date December 2016
1.9       bertrand  134: *
                    135: *> \ingroup complex16HEcomputational
                    136: *
                    137: *> \par Further Details:
                    138: *  =====================
                    139: *>
                    140: *> \verbatim
                    141: *>
                    142: *>  If UPLO = 'U', then A = U*D*U**H, where
                    143: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                    144: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                    145: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    146: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    147: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                    148: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    149: *>
                    150: *>             (   I    v    0   )   k-s
                    151: *>     U(k) =  (   0    I    0   )   s
                    152: *>             (   0    0    I   )   n-k
                    153: *>                k-s   s   n-k
                    154: *>
                    155: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    156: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    157: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    158: *>
                    159: *>  If UPLO = 'L', then A = L*D*L**H, where
                    160: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    161: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    162: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    163: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    164: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    165: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    166: *>
                    167: *>             (   I    0     0   )  k-1
                    168: *>     L(k) =  (   0    I     0   )  s
                    169: *>             (   0    v     I   )  n-k-s+1
                    170: *>                k-1   s  n-k-s+1
                    171: *>
                    172: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    173: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    174: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    175: *> \endverbatim
                    176: *>
                    177: *  =====================================================================
1.1       bertrand  178:       SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    179: *
1.15      bertrand  180: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  183: *     December 2016
1.1       bertrand  184: *
                    185: *     .. Scalar Arguments ..
                    186:       CHARACTER          UPLO
                    187:       INTEGER            INFO, LDA, LWORK, N
                    188: *     ..
                    189: *     .. Array Arguments ..
                    190:       INTEGER            IPIV( * )
                    191:       COMPLEX*16         A( LDA, * ), WORK( * )
                    192: *     ..
                    193: *
                    194: *  =====================================================================
                    195: *
                    196: *     .. Local Scalars ..
                    197:       LOGICAL            LQUERY, UPPER
                    198:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    199: *     ..
                    200: *     .. External Functions ..
                    201:       LOGICAL            LSAME
                    202:       INTEGER            ILAENV
                    203:       EXTERNAL           LSAME, ILAENV
                    204: *     ..
                    205: *     .. External Subroutines ..
                    206:       EXTERNAL           XERBLA, ZHETF2, ZLAHEF
                    207: *     ..
                    208: *     .. Intrinsic Functions ..
                    209:       INTRINSIC          MAX
                    210: *     ..
                    211: *     .. Executable Statements ..
                    212: *
                    213: *     Test the input parameters.
                    214: *
                    215:       INFO = 0
                    216:       UPPER = LSAME( UPLO, 'U' )
                    217:       LQUERY = ( LWORK.EQ.-1 )
                    218:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    219:          INFO = -1
                    220:       ELSE IF( N.LT.0 ) THEN
                    221:          INFO = -2
                    222:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    223:          INFO = -4
                    224:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    225:          INFO = -7
                    226:       END IF
                    227: *
                    228:       IF( INFO.EQ.0 ) THEN
                    229: *
                    230: *        Determine the block size
                    231: *
                    232:          NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
                    233:          LWKOPT = N*NB
                    234:          WORK( 1 ) = LWKOPT
                    235:       END IF
                    236: *
                    237:       IF( INFO.NE.0 ) THEN
                    238:          CALL XERBLA( 'ZHETRF', -INFO )
                    239:          RETURN
                    240:       ELSE IF( LQUERY ) THEN
                    241:          RETURN
                    242:       END IF
                    243: *
                    244:       NBMIN = 2
                    245:       LDWORK = N
                    246:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    247:          IWS = LDWORK*NB
                    248:          IF( LWORK.LT.IWS ) THEN
                    249:             NB = MAX( LWORK / LDWORK, 1 )
                    250:             NBMIN = MAX( 2, ILAENV( 2, 'ZHETRF', UPLO, N, -1, -1, -1 ) )
                    251:          END IF
                    252:       ELSE
                    253:          IWS = 1
                    254:       END IF
                    255:       IF( NB.LT.NBMIN )
                    256:      $   NB = N
                    257: *
                    258:       IF( UPPER ) THEN
                    259: *
1.8       bertrand  260: *        Factorize A as U*D*U**H using the upper triangle of A
1.1       bertrand  261: *
                    262: *        K is the main loop index, decreasing from N to 1 in steps of
                    263: *        KB, where KB is the number of columns factorized by ZLAHEF;
                    264: *        KB is either NB or NB-1, or K for the last block
                    265: *
                    266:          K = N
                    267:    10    CONTINUE
                    268: *
                    269: *        If K < 1, exit from loop
                    270: *
                    271:          IF( K.LT.1 )
                    272:      $      GO TO 40
                    273: *
                    274:          IF( K.GT.NB ) THEN
                    275: *
                    276: *           Factorize columns k-kb+1:k of A and use blocked code to
                    277: *           update columns 1:k-kb
                    278: *
                    279:             CALL ZLAHEF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
                    280:          ELSE
                    281: *
                    282: *           Use unblocked code to factorize columns 1:k of A
                    283: *
                    284:             CALL ZHETF2( UPLO, K, A, LDA, IPIV, IINFO )
                    285:             KB = K
                    286:          END IF
                    287: *
                    288: *        Set INFO on the first occurrence of a zero pivot
                    289: *
                    290:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    291:      $      INFO = IINFO
                    292: *
                    293: *        Decrease K and return to the start of the main loop
                    294: *
                    295:          K = K - KB
                    296:          GO TO 10
                    297: *
                    298:       ELSE
                    299: *
1.8       bertrand  300: *        Factorize A as L*D*L**H using the lower triangle of A
1.1       bertrand  301: *
                    302: *        K is the main loop index, increasing from 1 to N in steps of
                    303: *        KB, where KB is the number of columns factorized by ZLAHEF;
                    304: *        KB is either NB or NB-1, or N-K+1 for the last block
                    305: *
                    306:          K = 1
                    307:    20    CONTINUE
                    308: *
                    309: *        If K > N, exit from loop
                    310: *
                    311:          IF( K.GT.N )
                    312:      $      GO TO 40
                    313: *
                    314:          IF( K.LE.N-NB ) THEN
                    315: *
                    316: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    317: *           update columns k+kb:n
                    318: *
                    319:             CALL ZLAHEF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
                    320:      $                   WORK, N, IINFO )
                    321:          ELSE
                    322: *
                    323: *           Use unblocked code to factorize columns k:n of A
                    324: *
                    325:             CALL ZHETF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
                    326:             KB = N - K + 1
                    327:          END IF
                    328: *
                    329: *        Set INFO on the first occurrence of a zero pivot
                    330: *
                    331:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    332:      $      INFO = IINFO + K - 1
                    333: *
                    334: *        Adjust IPIV
                    335: *
                    336:          DO 30 J = K, K + KB - 1
                    337:             IF( IPIV( J ).GT.0 ) THEN
                    338:                IPIV( J ) = IPIV( J ) + K - 1
                    339:             ELSE
                    340:                IPIV( J ) = IPIV( J ) - K + 1
                    341:             END IF
                    342:    30    CONTINUE
                    343: *
                    344: *        Increase K and return to the start of the main loop
                    345: *
                    346:          K = K + KB
                    347:          GO TO 20
                    348: *
                    349:       END IF
                    350: *
                    351:    40 CONTINUE
                    352:       WORK( 1 ) = LWKOPT
                    353:       RETURN
                    354: *
                    355: *     End of ZHETRF
                    356: *
                    357:       END

CVSweb interface <joel.bertrand@systella.fr>