Annotation of rpl/lapack/lapack/zhetrd_he2hb.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZHETRD_HE2HB
        !             2: *
        !             3: *  @precisions fortran z -> s d c
        !             4: *      
        !             5: *  =========== DOCUMENTATION ===========
        !             6: *
        !             7: * Online html documentation available at 
        !             8: *            http://www.netlib.org/lapack/explore-html/ 
        !             9: *
        !            10: *> \htmlonly
        !            11: *> Download ZHETRD_HE2HB + dependencies 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrd.f"> 
        !            13: *> [TGZ]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrd.f"> 
        !            15: *> [ZIP]</a> 
        !            16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrd.f"> 
        !            17: *> [TXT]</a>
        !            18: *> \endhtmlonly 
        !            19: *
        !            20: *  Definition:
        !            21: *  ===========
        !            22: *
        !            23: *       SUBROUTINE ZHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, 
        !            24: *                              WORK, LWORK, INFO )
        !            25: *
        !            26: *       IMPLICIT NONE
        !            27: *
        !            28: *       .. Scalar Arguments ..
        !            29: *       CHARACTER          UPLO
        !            30: *       INTEGER            INFO, LDA, LDAB, LWORK, N, KD
        !            31: *       ..
        !            32: *       .. Array Arguments ..
        !            33: *       COMPLEX*16         A( LDA, * ), AB( LDAB, * ), 
        !            34: *                          TAU( * ), WORK( * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> ZHETRD_HE2HB reduces a complex Hermitian matrix A to complex Hermitian
        !            44: *> band-diagonal form AB by a unitary similarity transformation:
        !            45: *> Q**H * A * Q = AB.
        !            46: *> \endverbatim
        !            47: *
        !            48: *  Arguments:
        !            49: *  ==========
        !            50: *
        !            51: *> \param[in] UPLO
        !            52: *> \verbatim
        !            53: *>          UPLO is CHARACTER*1
        !            54: *>          = 'U':  Upper triangle of A is stored;
        !            55: *>          = 'L':  Lower triangle of A is stored.
        !            56: *> \endverbatim
        !            57: *>
        !            58: *> \param[in] N
        !            59: *> \verbatim
        !            60: *>          N is INTEGER
        !            61: *>          The order of the matrix A.  N >= 0.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] KD
        !            65: *> \verbatim
        !            66: *>          KD is INTEGER
        !            67: *>          The number of superdiagonals of the reduced matrix if UPLO = 'U',
        !            68: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
        !            69: *>          The reduced matrix is stored in the array AB.
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in,out] A
        !            73: *> \verbatim
        !            74: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            75: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
        !            76: *>          N-by-N upper triangular part of A contains the upper
        !            77: *>          triangular part of the matrix A, and the strictly lower
        !            78: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !            79: *>          leading N-by-N lower triangular part of A contains the lower
        !            80: *>          triangular part of the matrix A, and the strictly upper
        !            81: *>          triangular part of A is not referenced.
        !            82: *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
        !            83: *>          of A are overwritten by the corresponding elements of the
        !            84: *>          tridiagonal matrix T, and the elements above the first
        !            85: *>          superdiagonal, with the array TAU, represent the unitary
        !            86: *>          matrix Q as a product of elementary reflectors; if UPLO
        !            87: *>          = 'L', the diagonal and first subdiagonal of A are over-
        !            88: *>          written by the corresponding elements of the tridiagonal
        !            89: *>          matrix T, and the elements below the first subdiagonal, with
        !            90: *>          the array TAU, represent the unitary matrix Q as a product
        !            91: *>          of elementary reflectors. See Further Details.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] LDA
        !            95: *> \verbatim
        !            96: *>          LDA is INTEGER
        !            97: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[out] AB
        !           101: *> \verbatim
        !           102: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
        !           103: *>          On exit, the upper or lower triangle of the Hermitian band
        !           104: *>          matrix A, stored in the first KD+1 rows of the array.  The
        !           105: *>          j-th column of A is stored in the j-th column of the array AB
        !           106: *>          as follows:
        !           107: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
        !           108: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] LDAB
        !           112: *> \verbatim
        !           113: *>          LDAB is INTEGER
        !           114: *>          The leading dimension of the array AB.  LDAB >= KD+1.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[out] TAU
        !           118: *> \verbatim
        !           119: *>          TAU is COMPLEX*16 array, dimension (N-KD)
        !           120: *>          The scalar factors of the elementary reflectors (see Further
        !           121: *>          Details).
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[out] WORK
        !           125: *> \verbatim
        !           126: *>          WORK is COMPLEX*16 array, dimension LWORK.
        !           127: *>          On exit, if INFO = 0, or if LWORK=-1, 
        !           128: *>          WORK(1) returns the size of LWORK.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] LWORK
        !           132: *> \verbatim
        !           133: *>          LWORK is INTEGER
        !           134: *>          The dimension of the array WORK which should be calculated
        !           135: *           by a workspace query. LWORK = MAX(1, LWORK_QUERY)
        !           136: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           137: *>          only calculates the optimal size of the WORK array, returns
        !           138: *>          this value as the first entry of the WORK array, and no error
        !           139: *>          message related to LWORK is issued by XERBLA.
        !           140: *>          LWORK_QUERY = N*KD + N*max(KD,FACTOPTNB) + 2*KD*KD
        !           141: *>          where FACTOPTNB is the blocking used by the QR or LQ
        !           142: *>          algorithm, usually FACTOPTNB=128 is a good choice otherwise
        !           143: *>          putting LWORK=-1 will provide the size of WORK.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[out] INFO
        !           147: *> \verbatim
        !           148: *>          INFO is INTEGER
        !           149: *>          = 0:  successful exit
        !           150: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           151: *> \endverbatim
        !           152: *
        !           153: *  Authors:
        !           154: *  ========
        !           155: *
        !           156: *> \author Univ. of Tennessee 
        !           157: *> \author Univ. of California Berkeley 
        !           158: *> \author Univ. of Colorado Denver 
        !           159: *> \author NAG Ltd. 
        !           160: *
        !           161: *> \date December 2016
        !           162: *
        !           163: *> \ingroup complex16HEcomputational
        !           164: *
        !           165: *> \par Further Details:
        !           166: *  =====================
        !           167: *>
        !           168: *> \verbatim
        !           169: *>
        !           170: *>  Implemented by Azzam Haidar.
        !           171: *>
        !           172: *>  All details are available on technical report, SC11, SC13 papers.
        !           173: *>
        !           174: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
        !           175: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
        !           176: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
        !           177: *>  of 2011 International Conference for High Performance Computing,
        !           178: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
        !           179: *>  Article 8 , 11 pages.
        !           180: *>  http://doi.acm.org/10.1145/2063384.2063394
        !           181: *>
        !           182: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
        !           183: *>  An improved parallel singular value algorithm and its implementation 
        !           184: *>  for multicore hardware, In Proceedings of 2013 International Conference
        !           185: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
        !           186: *>  Denver, Colorado, USA, 2013.
        !           187: *>  Article 90, 12 pages.
        !           188: *>  http://doi.acm.org/10.1145/2503210.2503292
        !           189: *>
        !           190: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
        !           191: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
        !           192: *>  calculations based on fine-grained memory aware tasks.
        !           193: *>  International Journal of High Performance Computing Applications.
        !           194: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
        !           195: *>  http://hpc.sagepub.com/content/28/2/196 
        !           196: *>
        !           197: *> \endverbatim
        !           198: *>
        !           199: *> \verbatim
        !           200: *>
        !           201: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
        !           202: *>  reflectors
        !           203: *>
        !           204: *>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = n-kd.
        !           205: *>
        !           206: *>  Each H(i) has the form
        !           207: *>
        !           208: *>     H(i) = I - tau * v * v**H
        !           209: *>
        !           210: *>  where tau is a complex scalar, and v is a complex vector with
        !           211: *>  v(1:i+kd-1) = 0 and v(i+kd) = 1; conjg(v(i+kd+1:n)) is stored on exit in
        !           212: *>  A(i,i+kd+1:n), and tau in TAU(i).
        !           213: *>
        !           214: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
        !           215: *>  reflectors
        !           216: *>
        !           217: *>     Q = H(1) H(2) . . . H(k), where k = n-kd.
        !           218: *>
        !           219: *>  Each H(i) has the form
        !           220: *>
        !           221: *>     H(i) = I - tau * v * v**H
        !           222: *>
        !           223: *>  where tau is a complex scalar, and v is a complex vector with
        !           224: *>  v(kd+1:i) = 0 and v(i+kd+1) = 1; v(i+kd+2:n) is stored on exit in
        !           225: *   A(i+kd+2:n,i), and tau in TAU(i).
        !           226: *>
        !           227: *>  The contents of A on exit are illustrated by the following examples
        !           228: *>  with n = 5:
        !           229: *>
        !           230: *>  if UPLO = 'U':                       if UPLO = 'L':
        !           231: *>
        !           232: *>    (  ab  ab/v1  v1      v1     v1    )              (  ab                            )
        !           233: *>    (      ab     ab/v2   v2     v2    )              (  ab/v1  ab                     )
        !           234: *>    (             ab      ab/v3  v3    )              (  v1     ab/v2  ab              )
        !           235: *>    (                     ab     ab/v4 )              (  v1     v2     ab/v3  ab       )
        !           236: *>    (                            ab    )              (  v1     v2     v3     ab/v4 ab )
        !           237: *>
        !           238: *>  where d and e denote diagonal and off-diagonal elements of T, and vi
        !           239: *>  denotes an element of the vector defining H(i).
        !           240: *> \endverbatim
        !           241: *>
        !           242: *  =====================================================================
        !           243:       SUBROUTINE ZHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, 
        !           244:      $                         WORK, LWORK, INFO )
        !           245: *
        !           246:       IMPLICIT NONE
        !           247: *
        !           248: *  -- LAPACK computational routine (version 3.7.0) --
        !           249: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           250: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           251: *     December 2016
        !           252: *
        !           253: *     .. Scalar Arguments ..
        !           254:       CHARACTER          UPLO
        !           255:       INTEGER            INFO, LDA, LDAB, LWORK, N, KD
        !           256: *     ..
        !           257: *     .. Array Arguments ..
        !           258:       COMPLEX*16         A( LDA, * ), AB( LDAB, * ), 
        !           259:      $                   TAU( * ), WORK( * )
        !           260: *     ..
        !           261: *
        !           262: *  =====================================================================
        !           263: *
        !           264: *     .. Parameters ..
        !           265:       DOUBLE PRECISION   RONE
        !           266:       COMPLEX*16         ZERO, ONE, HALF
        !           267:       PARAMETER          ( RONE = 1.0D+0,
        !           268:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
        !           269:      $                   ONE = ( 1.0D+0, 0.0D+0 ),
        !           270:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
        !           271: *     ..
        !           272: *     .. Local Scalars ..
        !           273:       LOGICAL            LQUERY, UPPER
        !           274:       INTEGER            I, J, IINFO, LWMIN, PN, PK, LK,
        !           275:      $                   LDT, LDW, LDS2, LDS1, 
        !           276:      $                   LS2, LS1, LW, LT,
        !           277:      $                   TPOS, WPOS, S2POS, S1POS
        !           278: *     ..
        !           279: *     .. External Subroutines ..
        !           280:       EXTERNAL           XERBLA, ZHER2K, ZHEMM, ZGEMM,
        !           281:      $                   ZLARFT, ZGELQF, ZGEQRF, ZLASET
        !           282: *     ..
        !           283: *     .. Intrinsic Functions ..
        !           284:       INTRINSIC          MIN, MAX
        !           285: *     ..
        !           286: *     .. External Functions ..
        !           287:       LOGICAL            LSAME
        !           288:       INTEGER            ILAENV 
        !           289:       EXTERNAL           LSAME, ILAENV
        !           290: *     ..
        !           291: *     .. Executable Statements ..
        !           292: *
        !           293: *     Determine the minimal workspace size required 
        !           294: *     and test the input parameters
        !           295: *
        !           296:       INFO   = 0
        !           297:       UPPER  = LSAME( UPLO, 'U' )
        !           298:       LQUERY = ( LWORK.EQ.-1 )
        !           299:       LWMIN  = ILAENV( 20, 'ZHETRD_HE2HB', '', N, KD, -1, -1 )
        !           300:       
        !           301:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           302:          INFO = -1
        !           303:       ELSE IF( N.LT.0 ) THEN
        !           304:          INFO = -2
        !           305:       ELSE IF( KD.LT.0 ) THEN
        !           306:          INFO = -3
        !           307:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           308:          INFO = -5
        !           309:       ELSE IF( LDAB.LT.MAX( 1, KD+1 ) ) THEN
        !           310:          INFO = -7
        !           311:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           312:          INFO = -10
        !           313:       END IF
        !           314: *
        !           315:       IF( INFO.NE.0 ) THEN
        !           316:          CALL XERBLA( 'ZHETRD_HE2HB', -INFO )
        !           317:          RETURN
        !           318:       ELSE IF( LQUERY ) THEN
        !           319:          WORK( 1 ) = LWMIN
        !           320:          RETURN
        !           321:       END IF
        !           322: *
        !           323: *     Quick return if possible        
        !           324: *     Copy the upper/lower portion of A into AB 
        !           325: *
        !           326:       IF( N.LE.KD+1 ) THEN
        !           327:           IF( UPPER ) THEN
        !           328:               DO 100 I = 1, N
        !           329:                   LK = MIN( KD+1, I )
        !           330:                   CALL ZCOPY( LK, A( I-LK+1, I ), 1, 
        !           331:      $                            AB( KD+1-LK+1, I ), 1 )
        !           332:   100         CONTINUE
        !           333:           ELSE
        !           334:               DO 110 I = 1, N
        !           335:                   LK = MIN( KD+1, N-I+1 )
        !           336:                   CALL ZCOPY( LK, A( I, I ), 1, AB( 1, I ), 1 )
        !           337:   110         CONTINUE
        !           338:           ENDIF
        !           339:           WORK( 1 ) = 1
        !           340:           RETURN
        !           341:       END IF
        !           342: *
        !           343: *     Determine the pointer position for the workspace
        !           344: *      
        !           345:       LDT    = KD
        !           346:       LDS1   = KD
        !           347:       LT     = LDT*KD
        !           348:       LW     = N*KD
        !           349:       LS1    = LDS1*KD
        !           350:       LS2    = LWMIN - LT - LW - LS1
        !           351: *      LS2 = N*MAX(KD,FACTOPTNB) 
        !           352:       TPOS   = 1
        !           353:       WPOS   = TPOS  + LT
        !           354:       S1POS  = WPOS  + LW
        !           355:       S2POS  = S1POS + LS1 
        !           356:       IF( UPPER ) THEN
        !           357:           LDW    = KD
        !           358:           LDS2   = KD
        !           359:       ELSE
        !           360:           LDW    = N
        !           361:           LDS2   = N
        !           362:       ENDIF
        !           363: *
        !           364: *
        !           365: *     Set the workspace of the triangular matrix T to zero once such a
        !           366: *     way everytime T is generated the upper/lower portion will be always zero  
        !           367: *   
        !           368:       CALL ZLASET( "A", LDT, KD, ZERO, ZERO, WORK( TPOS ), LDT )
        !           369: *
        !           370:       IF( UPPER ) THEN
        !           371:           DO 10 I = 1, N - KD, KD
        !           372:              PN = N-I-KD+1
        !           373:              PK = MIN( N-I-KD+1, KD )
        !           374: *        
        !           375: *            Compute the LQ factorization of the current block
        !           376: *        
        !           377:              CALL ZGELQF( KD, PN, A( I, I+KD ), LDA,
        !           378:      $                    TAU( I ), WORK( S2POS ), LS2, IINFO )
        !           379: *        
        !           380: *            Copy the upper portion of A into AB
        !           381: *        
        !           382:              DO 20 J = I, I+PK-1
        !           383:                 LK = MIN( KD, N-J ) + 1
        !           384:                 CALL ZCOPY( LK, A( J, J ), LDA, AB( KD+1, J ), LDAB-1 )
        !           385:    20        CONTINUE
        !           386: *                
        !           387:              CALL ZLASET( 'Lower', PK, PK, ZERO, ONE, 
        !           388:      $                    A( I, I+KD ), LDA )
        !           389: *        
        !           390: *            Form the matrix T
        !           391: *        
        !           392:              CALL ZLARFT( 'Forward', 'Rowwise', PN, PK,
        !           393:      $                    A( I, I+KD ), LDA, TAU( I ), 
        !           394:      $                    WORK( TPOS ), LDT )
        !           395: *        
        !           396: *            Compute W:
        !           397: *             
        !           398:              CALL ZGEMM( 'Conjugate', 'No transpose', PK, PN, PK,
        !           399:      $                   ONE,  WORK( TPOS ), LDT,
        !           400:      $                         A( I, I+KD ), LDA,
        !           401:      $                   ZERO, WORK( S2POS ), LDS2 )
        !           402: *        
        !           403:              CALL ZHEMM( 'Right', UPLO, PK, PN,
        !           404:      $                   ONE,  A( I+KD, I+KD ), LDA,
        !           405:      $                         WORK( S2POS ), LDS2,
        !           406:      $                   ZERO, WORK( WPOS ), LDW )
        !           407: *        
        !           408:              CALL ZGEMM( 'No transpose', 'Conjugate', PK, PK, PN,
        !           409:      $                   ONE,  WORK( WPOS ), LDW,
        !           410:      $                         WORK( S2POS ), LDS2,
        !           411:      $                   ZERO, WORK( S1POS ), LDS1 )
        !           412: *        
        !           413:              CALL ZGEMM( 'No transpose', 'No transpose', PK, PN, PK,
        !           414:      $                   -HALF, WORK( S1POS ), LDS1, 
        !           415:      $                          A( I, I+KD ), LDA,
        !           416:      $                   ONE,   WORK( WPOS ), LDW )
        !           417: *             
        !           418: *        
        !           419: *            Update the unreduced submatrix A(i+kd:n,i+kd:n), using
        !           420: *            an update of the form:  A := A - V'*W - W'*V
        !           421: *        
        !           422:              CALL ZHER2K( UPLO, 'Conjugate', PN, PK,
        !           423:      $                    -ONE, A( I, I+KD ), LDA,
        !           424:      $                          WORK( WPOS ), LDW,
        !           425:      $                    RONE, A( I+KD, I+KD ), LDA )
        !           426:    10     CONTINUE
        !           427: *
        !           428: *        Copy the upper band to AB which is the band storage matrix
        !           429: *
        !           430:          DO 30 J = N-KD+1, N
        !           431:             LK = MIN(KD, N-J) + 1
        !           432:             CALL ZCOPY( LK, A( J, J ), LDA, AB( KD+1, J ), LDAB-1 )
        !           433:    30    CONTINUE
        !           434: *
        !           435:       ELSE
        !           436: *
        !           437: *         Reduce the lower triangle of A to lower band matrix
        !           438: *        
        !           439:           DO 40 I = 1, N - KD, KD
        !           440:              PN = N-I-KD+1
        !           441:              PK = MIN( N-I-KD+1, KD )
        !           442: *        
        !           443: *            Compute the QR factorization of the current block
        !           444: *        
        !           445:              CALL ZGEQRF( PN, KD, A( I+KD, I ), LDA,
        !           446:      $                    TAU( I ), WORK( S2POS ), LS2, IINFO )
        !           447: *        
        !           448: *            Copy the upper portion of A into AB 
        !           449: *        
        !           450:              DO 50 J = I, I+PK-1
        !           451:                 LK = MIN( KD, N-J ) + 1
        !           452:                 CALL ZCOPY( LK, A( J, J ), 1, AB( 1, J ), 1 )
        !           453:    50        CONTINUE
        !           454: *                
        !           455:              CALL ZLASET( 'Upper', PK, PK, ZERO, ONE, 
        !           456:      $                    A( I+KD, I ), LDA )
        !           457: *        
        !           458: *            Form the matrix T
        !           459: *        
        !           460:              CALL ZLARFT( 'Forward', 'Columnwise', PN, PK,
        !           461:      $                    A( I+KD, I ), LDA, TAU( I ), 
        !           462:      $                    WORK( TPOS ), LDT )
        !           463: *        
        !           464: *            Compute W:
        !           465: *             
        !           466:              CALL ZGEMM( 'No transpose', 'No transpose', PN, PK, PK,
        !           467:      $                   ONE, A( I+KD, I ), LDA,
        !           468:      $                         WORK( TPOS ), LDT,
        !           469:      $                   ZERO, WORK( S2POS ), LDS2 )
        !           470: *        
        !           471:              CALL ZHEMM( 'Left', UPLO, PN, PK,
        !           472:      $                   ONE, A( I+KD, I+KD ), LDA,
        !           473:      $                         WORK( S2POS ), LDS2,
        !           474:      $                   ZERO, WORK( WPOS ), LDW )
        !           475: *        
        !           476:              CALL ZGEMM( 'Conjugate', 'No transpose', PK, PK, PN,
        !           477:      $                   ONE, WORK( S2POS ), LDS2,
        !           478:      $                         WORK( WPOS ), LDW,
        !           479:      $                   ZERO, WORK( S1POS ), LDS1 )
        !           480: *        
        !           481:              CALL ZGEMM( 'No transpose', 'No transpose', PN, PK, PK,
        !           482:      $                   -HALF, A( I+KD, I ), LDA,
        !           483:      $                         WORK( S1POS ), LDS1,
        !           484:      $                   ONE, WORK( WPOS ), LDW )
        !           485: *             
        !           486: *        
        !           487: *            Update the unreduced submatrix A(i+kd:n,i+kd:n), using
        !           488: *            an update of the form:  A := A - V*W' - W*V'
        !           489: *        
        !           490:              CALL ZHER2K( UPLO, 'No transpose', PN, PK,
        !           491:      $                    -ONE, A( I+KD, I ), LDA,
        !           492:      $                           WORK( WPOS ), LDW,
        !           493:      $                    RONE, A( I+KD, I+KD ), LDA )
        !           494: *            ==================================================================
        !           495: *            RESTORE A FOR COMPARISON AND CHECKING TO BE REMOVED
        !           496: *             DO 45 J = I, I+PK-1
        !           497: *                LK = MIN( KD, N-J ) + 1
        !           498: *                CALL ZCOPY( LK, AB( 1, J ), 1, A( J, J ), 1 )
        !           499: *   45        CONTINUE
        !           500: *            ==================================================================
        !           501:    40     CONTINUE
        !           502: *
        !           503: *        Copy the lower band to AB which is the band storage matrix
        !           504: *
        !           505:          DO 60 J = N-KD+1, N
        !           506:             LK = MIN(KD, N-J) + 1
        !           507:             CALL ZCOPY( LK, A( J, J ), 1, AB( 1, J ), 1 )
        !           508:    60    CONTINUE
        !           509: 
        !           510:       END IF
        !           511: *
        !           512:       WORK( 1 ) = LWMIN
        !           513:       RETURN
        !           514: *
        !           515: *     End of ZHETRD_HE2HB
        !           516: *
        !           517:       END

CVSweb interface <joel.bertrand@systella.fr>