Annotation of rpl/lapack/lapack/zhetrd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZHETRD
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHETRD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       CHARACTER          UPLO
        !            25: *       INTEGER            INFO, LDA, LWORK, N
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       DOUBLE PRECISION   D( * ), E( * )
        !            29: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> ZHETRD reduces a complex Hermitian matrix A to real symmetric
        !            39: *> tridiagonal form T by a unitary similarity transformation:
        !            40: *> Q**H * A * Q = T.
        !            41: *> \endverbatim
        !            42: *
        !            43: *  Arguments:
        !            44: *  ==========
        !            45: *
        !            46: *> \param[in] UPLO
        !            47: *> \verbatim
        !            48: *>          UPLO is CHARACTER*1
        !            49: *>          = 'U':  Upper triangle of A is stored;
        !            50: *>          = 'L':  Lower triangle of A is stored.
        !            51: *> \endverbatim
        !            52: *>
        !            53: *> \param[in] N
        !            54: *> \verbatim
        !            55: *>          N is INTEGER
        !            56: *>          The order of the matrix A.  N >= 0.
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in,out] A
        !            60: *> \verbatim
        !            61: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            62: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
        !            63: *>          N-by-N upper triangular part of A contains the upper
        !            64: *>          triangular part of the matrix A, and the strictly lower
        !            65: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !            66: *>          leading N-by-N lower triangular part of A contains the lower
        !            67: *>          triangular part of the matrix A, and the strictly upper
        !            68: *>          triangular part of A is not referenced.
        !            69: *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
        !            70: *>          of A are overwritten by the corresponding elements of the
        !            71: *>          tridiagonal matrix T, and the elements above the first
        !            72: *>          superdiagonal, with the array TAU, represent the unitary
        !            73: *>          matrix Q as a product of elementary reflectors; if UPLO
        !            74: *>          = 'L', the diagonal and first subdiagonal of A are over-
        !            75: *>          written by the corresponding elements of the tridiagonal
        !            76: *>          matrix T, and the elements below the first subdiagonal, with
        !            77: *>          the array TAU, represent the unitary matrix Q as a product
        !            78: *>          of elementary reflectors. See Further Details.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] LDA
        !            82: *> \verbatim
        !            83: *>          LDA is INTEGER
        !            84: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[out] D
        !            88: *> \verbatim
        !            89: *>          D is DOUBLE PRECISION array, dimension (N)
        !            90: *>          The diagonal elements of the tridiagonal matrix T:
        !            91: *>          D(i) = A(i,i).
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[out] E
        !            95: *> \verbatim
        !            96: *>          E is DOUBLE PRECISION array, dimension (N-1)
        !            97: *>          The off-diagonal elements of the tridiagonal matrix T:
        !            98: *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[out] TAU
        !           102: *> \verbatim
        !           103: *>          TAU is COMPLEX*16 array, dimension (N-1)
        !           104: *>          The scalar factors of the elementary reflectors (see Further
        !           105: *>          Details).
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[out] WORK
        !           109: *> \verbatim
        !           110: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           111: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[in] LWORK
        !           115: *> \verbatim
        !           116: *>          LWORK is INTEGER
        !           117: *>          The dimension of the array WORK.  LWORK >= 1.
        !           118: *>          For optimum performance LWORK >= N*NB, where NB is the
        !           119: *>          optimal blocksize.
        !           120: *>
        !           121: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           122: *>          only calculates the optimal size of the WORK array, returns
        !           123: *>          this value as the first entry of the WORK array, and no error
        !           124: *>          message related to LWORK is issued by XERBLA.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[out] INFO
        !           128: *> \verbatim
        !           129: *>          INFO is INTEGER
        !           130: *>          = 0:  successful exit
        !           131: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           132: *> \endverbatim
        !           133: *
        !           134: *  Authors:
        !           135: *  ========
        !           136: *
        !           137: *> \author Univ. of Tennessee 
        !           138: *> \author Univ. of California Berkeley 
        !           139: *> \author Univ. of Colorado Denver 
        !           140: *> \author NAG Ltd. 
        !           141: *
        !           142: *> \date November 2011
        !           143: *
        !           144: *> \ingroup complex16HEcomputational
        !           145: *
        !           146: *> \par Further Details:
        !           147: *  =====================
        !           148: *>
        !           149: *> \verbatim
        !           150: *>
        !           151: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
        !           152: *>  reflectors
        !           153: *>
        !           154: *>     Q = H(n-1) . . . H(2) H(1).
        !           155: *>
        !           156: *>  Each H(i) has the form
        !           157: *>
        !           158: *>     H(i) = I - tau * v * v**H
        !           159: *>
        !           160: *>  where tau is a complex scalar, and v is a complex vector with
        !           161: *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
        !           162: *>  A(1:i-1,i+1), and tau in TAU(i).
        !           163: *>
        !           164: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
        !           165: *>  reflectors
        !           166: *>
        !           167: *>     Q = H(1) H(2) . . . H(n-1).
        !           168: *>
        !           169: *>  Each H(i) has the form
        !           170: *>
        !           171: *>     H(i) = I - tau * v * v**H
        !           172: *>
        !           173: *>  where tau is a complex scalar, and v is a complex vector with
        !           174: *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
        !           175: *>  and tau in TAU(i).
        !           176: *>
        !           177: *>  The contents of A on exit are illustrated by the following examples
        !           178: *>  with n = 5:
        !           179: *>
        !           180: *>  if UPLO = 'U':                       if UPLO = 'L':
        !           181: *>
        !           182: *>    (  d   e   v2  v3  v4 )              (  d                  )
        !           183: *>    (      d   e   v3  v4 )              (  e   d              )
        !           184: *>    (          d   e   v4 )              (  v1  e   d          )
        !           185: *>    (              d   e  )              (  v1  v2  e   d      )
        !           186: *>    (                  d  )              (  v1  v2  v3  e   d  )
        !           187: *>
        !           188: *>  where d and e denote diagonal and off-diagonal elements of T, and vi
        !           189: *>  denotes an element of the vector defining H(i).
        !           190: *> \endverbatim
        !           191: *>
        !           192: *  =====================================================================
1.1       bertrand  193:       SUBROUTINE ZHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
                    194: *
1.9     ! bertrand  195: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  198: *     November 2011
1.1       bertrand  199: *
                    200: *     .. Scalar Arguments ..
                    201:       CHARACTER          UPLO
                    202:       INTEGER            INFO, LDA, LWORK, N
                    203: *     ..
                    204: *     .. Array Arguments ..
                    205:       DOUBLE PRECISION   D( * ), E( * )
                    206:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    207: *     ..
                    208: *
                    209: *  =====================================================================
                    210: *
                    211: *     .. Parameters ..
                    212:       DOUBLE PRECISION   ONE
                    213:       PARAMETER          ( ONE = 1.0D+0 )
                    214:       COMPLEX*16         CONE
                    215:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    216: *     ..
                    217: *     .. Local Scalars ..
                    218:       LOGICAL            LQUERY, UPPER
                    219:       INTEGER            I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
                    220:      $                   NBMIN, NX
                    221: *     ..
                    222: *     .. External Subroutines ..
                    223:       EXTERNAL           XERBLA, ZHER2K, ZHETD2, ZLATRD
                    224: *     ..
                    225: *     .. Intrinsic Functions ..
                    226:       INTRINSIC          MAX
                    227: *     ..
                    228: *     .. External Functions ..
                    229:       LOGICAL            LSAME
                    230:       INTEGER            ILAENV
                    231:       EXTERNAL           LSAME, ILAENV
                    232: *     ..
                    233: *     .. Executable Statements ..
                    234: *
                    235: *     Test the input parameters
                    236: *
                    237:       INFO = 0
                    238:       UPPER = LSAME( UPLO, 'U' )
                    239:       LQUERY = ( LWORK.EQ.-1 )
                    240:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    241:          INFO = -1
                    242:       ELSE IF( N.LT.0 ) THEN
                    243:          INFO = -2
                    244:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    245:          INFO = -4
                    246:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    247:          INFO = -9
                    248:       END IF
                    249: *
                    250:       IF( INFO.EQ.0 ) THEN
                    251: *
                    252: *        Determine the block size.
                    253: *
                    254:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    255:          LWKOPT = N*NB
                    256:          WORK( 1 ) = LWKOPT
                    257:       END IF
                    258: *
                    259:       IF( INFO.NE.0 ) THEN
                    260:          CALL XERBLA( 'ZHETRD', -INFO )
                    261:          RETURN
                    262:       ELSE IF( LQUERY ) THEN
                    263:          RETURN
                    264:       END IF
                    265: *
                    266: *     Quick return if possible
                    267: *
                    268:       IF( N.EQ.0 ) THEN
                    269:          WORK( 1 ) = 1
                    270:          RETURN
                    271:       END IF
                    272: *
                    273:       NX = N
                    274:       IWS = 1
                    275:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    276: *
                    277: *        Determine when to cross over from blocked to unblocked code
                    278: *        (last block is always handled by unblocked code).
                    279: *
                    280:          NX = MAX( NB, ILAENV( 3, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
                    281:          IF( NX.LT.N ) THEN
                    282: *
                    283: *           Determine if workspace is large enough for blocked code.
                    284: *
                    285:             LDWORK = N
                    286:             IWS = LDWORK*NB
                    287:             IF( LWORK.LT.IWS ) THEN
                    288: *
                    289: *              Not enough workspace to use optimal NB:  determine the
                    290: *              minimum value of NB, and reduce NB or force use of
                    291: *              unblocked code by setting NX = N.
                    292: *
                    293:                NB = MAX( LWORK / LDWORK, 1 )
                    294:                NBMIN = ILAENV( 2, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    295:                IF( NB.LT.NBMIN )
                    296:      $            NX = N
                    297:             END IF
                    298:          ELSE
                    299:             NX = N
                    300:          END IF
                    301:       ELSE
                    302:          NB = 1
                    303:       END IF
                    304: *
                    305:       IF( UPPER ) THEN
                    306: *
                    307: *        Reduce the upper triangle of A.
                    308: *        Columns 1:kk are handled by the unblocked method.
                    309: *
                    310:          KK = N - ( ( N-NX+NB-1 ) / NB )*NB
                    311:          DO 20 I = N - NB + 1, KK + 1, -NB
                    312: *
                    313: *           Reduce columns i:i+nb-1 to tridiagonal form and form the
                    314: *           matrix W which is needed to update the unreduced part of
                    315: *           the matrix
                    316: *
                    317:             CALL ZLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
                    318:      $                   LDWORK )
                    319: *
                    320: *           Update the unreduced submatrix A(1:i-1,1:i-1), using an
1.8       bertrand  321: *           update of the form:  A := A - V*W**H - W*V**H
1.1       bertrand  322: *
                    323:             CALL ZHER2K( UPLO, 'No transpose', I-1, NB, -CONE,
                    324:      $                   A( 1, I ), LDA, WORK, LDWORK, ONE, A, LDA )
                    325: *
                    326: *           Copy superdiagonal elements back into A, and diagonal
                    327: *           elements into D
                    328: *
                    329:             DO 10 J = I, I + NB - 1
                    330:                A( J-1, J ) = E( J-1 )
                    331:                D( J ) = A( J, J )
                    332:    10       CONTINUE
                    333:    20    CONTINUE
                    334: *
                    335: *        Use unblocked code to reduce the last or only block
                    336: *
                    337:          CALL ZHETD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
                    338:       ELSE
                    339: *
                    340: *        Reduce the lower triangle of A
                    341: *
                    342:          DO 40 I = 1, N - NX, NB
                    343: *
                    344: *           Reduce columns i:i+nb-1 to tridiagonal form and form the
                    345: *           matrix W which is needed to update the unreduced part of
                    346: *           the matrix
                    347: *
                    348:             CALL ZLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
                    349:      $                   TAU( I ), WORK, LDWORK )
                    350: *
                    351: *           Update the unreduced submatrix A(i+nb:n,i+nb:n), using
1.8       bertrand  352: *           an update of the form:  A := A - V*W**H - W*V**H
1.1       bertrand  353: *
                    354:             CALL ZHER2K( UPLO, 'No transpose', N-I-NB+1, NB, -CONE,
                    355:      $                   A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
                    356:      $                   A( I+NB, I+NB ), LDA )
                    357: *
                    358: *           Copy subdiagonal elements back into A, and diagonal
                    359: *           elements into D
                    360: *
                    361:             DO 30 J = I, I + NB - 1
                    362:                A( J+1, J ) = E( J )
                    363:                D( J ) = A( J, J )
                    364:    30       CONTINUE
                    365:    40    CONTINUE
                    366: *
                    367: *        Use unblocked code to reduce the last or only block
                    368: *
                    369:          CALL ZHETD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
                    370:      $                TAU( I ), IINFO )
                    371:       END IF
                    372: *
                    373:       WORK( 1 ) = LWKOPT
                    374:       RETURN
                    375: *
                    376: *     End of ZHETRD
                    377: *
                    378:       END

CVSweb interface <joel.bertrand@systella.fr>