Annotation of rpl/lapack/lapack/zhetrd.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INFO, LDA, LWORK, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   D( * ), E( * )
                     14:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZHETRD reduces a complex Hermitian matrix A to real symmetric
                     21: *  tridiagonal form T by a unitary similarity transformation:
                     22: *  Q**H * A * Q = T.
                     23: *
                     24: *  Arguments
                     25: *  =========
                     26: *
                     27: *  UPLO    (input) CHARACTER*1
                     28: *          = 'U':  Upper triangle of A is stored;
                     29: *          = 'L':  Lower triangle of A is stored.
                     30: *
                     31: *  N       (input) INTEGER
                     32: *          The order of the matrix A.  N >= 0.
                     33: *
                     34: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     35: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     36: *          N-by-N upper triangular part of A contains the upper
                     37: *          triangular part of the matrix A, and the strictly lower
                     38: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     39: *          leading N-by-N lower triangular part of A contains the lower
                     40: *          triangular part of the matrix A, and the strictly upper
                     41: *          triangular part of A is not referenced.
                     42: *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     43: *          of A are overwritten by the corresponding elements of the
                     44: *          tridiagonal matrix T, and the elements above the first
                     45: *          superdiagonal, with the array TAU, represent the unitary
                     46: *          matrix Q as a product of elementary reflectors; if UPLO
                     47: *          = 'L', the diagonal and first subdiagonal of A are over-
                     48: *          written by the corresponding elements of the tridiagonal
                     49: *          matrix T, and the elements below the first subdiagonal, with
                     50: *          the array TAU, represent the unitary matrix Q as a product
                     51: *          of elementary reflectors. See Further Details.
                     52: *
                     53: *  LDA     (input) INTEGER
                     54: *          The leading dimension of the array A.  LDA >= max(1,N).
                     55: *
                     56: *  D       (output) DOUBLE PRECISION array, dimension (N)
                     57: *          The diagonal elements of the tridiagonal matrix T:
                     58: *          D(i) = A(i,i).
                     59: *
                     60: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
                     61: *          The off-diagonal elements of the tridiagonal matrix T:
                     62: *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
                     63: *
                     64: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
                     65: *          The scalar factors of the elementary reflectors (see Further
                     66: *          Details).
                     67: *
                     68: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     69: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     70: *
                     71: *  LWORK   (input) INTEGER
                     72: *          The dimension of the array WORK.  LWORK >= 1.
                     73: *          For optimum performance LWORK >= N*NB, where NB is the
                     74: *          optimal blocksize.
                     75: *
                     76: *          If LWORK = -1, then a workspace query is assumed; the routine
                     77: *          only calculates the optimal size of the WORK array, returns
                     78: *          this value as the first entry of the WORK array, and no error
                     79: *          message related to LWORK is issued by XERBLA.
                     80: *
                     81: *  INFO    (output) INTEGER
                     82: *          = 0:  successful exit
                     83: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     84: *
                     85: *  Further Details
                     86: *  ===============
                     87: *
                     88: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
                     89: *  reflectors
                     90: *
                     91: *     Q = H(n-1) . . . H(2) H(1).
                     92: *
                     93: *  Each H(i) has the form
                     94: *
                     95: *     H(i) = I - tau * v * v'
                     96: *
                     97: *  where tau is a complex scalar, and v is a complex vector with
                     98: *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
                     99: *  A(1:i-1,i+1), and tau in TAU(i).
                    100: *
                    101: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
                    102: *  reflectors
                    103: *
                    104: *     Q = H(1) H(2) . . . H(n-1).
                    105: *
                    106: *  Each H(i) has the form
                    107: *
                    108: *     H(i) = I - tau * v * v'
                    109: *
                    110: *  where tau is a complex scalar, and v is a complex vector with
                    111: *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
                    112: *  and tau in TAU(i).
                    113: *
                    114: *  The contents of A on exit are illustrated by the following examples
                    115: *  with n = 5:
                    116: *
                    117: *  if UPLO = 'U':                       if UPLO = 'L':
                    118: *
                    119: *    (  d   e   v2  v3  v4 )              (  d                  )
                    120: *    (      d   e   v3  v4 )              (  e   d              )
                    121: *    (          d   e   v4 )              (  v1  e   d          )
                    122: *    (              d   e  )              (  v1  v2  e   d      )
                    123: *    (                  d  )              (  v1  v2  v3  e   d  )
                    124: *
                    125: *  where d and e denote diagonal and off-diagonal elements of T, and vi
                    126: *  denotes an element of the vector defining H(i).
                    127: *
                    128: *  =====================================================================
                    129: *
                    130: *     .. Parameters ..
                    131:       DOUBLE PRECISION   ONE
                    132:       PARAMETER          ( ONE = 1.0D+0 )
                    133:       COMPLEX*16         CONE
                    134:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    135: *     ..
                    136: *     .. Local Scalars ..
                    137:       LOGICAL            LQUERY, UPPER
                    138:       INTEGER            I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
                    139:      $                   NBMIN, NX
                    140: *     ..
                    141: *     .. External Subroutines ..
                    142:       EXTERNAL           XERBLA, ZHER2K, ZHETD2, ZLATRD
                    143: *     ..
                    144: *     .. Intrinsic Functions ..
                    145:       INTRINSIC          MAX
                    146: *     ..
                    147: *     .. External Functions ..
                    148:       LOGICAL            LSAME
                    149:       INTEGER            ILAENV
                    150:       EXTERNAL           LSAME, ILAENV
                    151: *     ..
                    152: *     .. Executable Statements ..
                    153: *
                    154: *     Test the input parameters
                    155: *
                    156:       INFO = 0
                    157:       UPPER = LSAME( UPLO, 'U' )
                    158:       LQUERY = ( LWORK.EQ.-1 )
                    159:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    160:          INFO = -1
                    161:       ELSE IF( N.LT.0 ) THEN
                    162:          INFO = -2
                    163:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    164:          INFO = -4
                    165:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    166:          INFO = -9
                    167:       END IF
                    168: *
                    169:       IF( INFO.EQ.0 ) THEN
                    170: *
                    171: *        Determine the block size.
                    172: *
                    173:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    174:          LWKOPT = N*NB
                    175:          WORK( 1 ) = LWKOPT
                    176:       END IF
                    177: *
                    178:       IF( INFO.NE.0 ) THEN
                    179:          CALL XERBLA( 'ZHETRD', -INFO )
                    180:          RETURN
                    181:       ELSE IF( LQUERY ) THEN
                    182:          RETURN
                    183:       END IF
                    184: *
                    185: *     Quick return if possible
                    186: *
                    187:       IF( N.EQ.0 ) THEN
                    188:          WORK( 1 ) = 1
                    189:          RETURN
                    190:       END IF
                    191: *
                    192:       NX = N
                    193:       IWS = 1
                    194:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    195: *
                    196: *        Determine when to cross over from blocked to unblocked code
                    197: *        (last block is always handled by unblocked code).
                    198: *
                    199:          NX = MAX( NB, ILAENV( 3, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
                    200:          IF( NX.LT.N ) THEN
                    201: *
                    202: *           Determine if workspace is large enough for blocked code.
                    203: *
                    204:             LDWORK = N
                    205:             IWS = LDWORK*NB
                    206:             IF( LWORK.LT.IWS ) THEN
                    207: *
                    208: *              Not enough workspace to use optimal NB:  determine the
                    209: *              minimum value of NB, and reduce NB or force use of
                    210: *              unblocked code by setting NX = N.
                    211: *
                    212:                NB = MAX( LWORK / LDWORK, 1 )
                    213:                NBMIN = ILAENV( 2, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    214:                IF( NB.LT.NBMIN )
                    215:      $            NX = N
                    216:             END IF
                    217:          ELSE
                    218:             NX = N
                    219:          END IF
                    220:       ELSE
                    221:          NB = 1
                    222:       END IF
                    223: *
                    224:       IF( UPPER ) THEN
                    225: *
                    226: *        Reduce the upper triangle of A.
                    227: *        Columns 1:kk are handled by the unblocked method.
                    228: *
                    229:          KK = N - ( ( N-NX+NB-1 ) / NB )*NB
                    230:          DO 20 I = N - NB + 1, KK + 1, -NB
                    231: *
                    232: *           Reduce columns i:i+nb-1 to tridiagonal form and form the
                    233: *           matrix W which is needed to update the unreduced part of
                    234: *           the matrix
                    235: *
                    236:             CALL ZLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
                    237:      $                   LDWORK )
                    238: *
                    239: *           Update the unreduced submatrix A(1:i-1,1:i-1), using an
                    240: *           update of the form:  A := A - V*W' - W*V'
                    241: *
                    242:             CALL ZHER2K( UPLO, 'No transpose', I-1, NB, -CONE,
                    243:      $                   A( 1, I ), LDA, WORK, LDWORK, ONE, A, LDA )
                    244: *
                    245: *           Copy superdiagonal elements back into A, and diagonal
                    246: *           elements into D
                    247: *
                    248:             DO 10 J = I, I + NB - 1
                    249:                A( J-1, J ) = E( J-1 )
                    250:                D( J ) = A( J, J )
                    251:    10       CONTINUE
                    252:    20    CONTINUE
                    253: *
                    254: *        Use unblocked code to reduce the last or only block
                    255: *
                    256:          CALL ZHETD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
                    257:       ELSE
                    258: *
                    259: *        Reduce the lower triangle of A
                    260: *
                    261:          DO 40 I = 1, N - NX, NB
                    262: *
                    263: *           Reduce columns i:i+nb-1 to tridiagonal form and form the
                    264: *           matrix W which is needed to update the unreduced part of
                    265: *           the matrix
                    266: *
                    267:             CALL ZLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
                    268:      $                   TAU( I ), WORK, LDWORK )
                    269: *
                    270: *           Update the unreduced submatrix A(i+nb:n,i+nb:n), using
                    271: *           an update of the form:  A := A - V*W' - W*V'
                    272: *
                    273:             CALL ZHER2K( UPLO, 'No transpose', N-I-NB+1, NB, -CONE,
                    274:      $                   A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
                    275:      $                   A( I+NB, I+NB ), LDA )
                    276: *
                    277: *           Copy subdiagonal elements back into A, and diagonal
                    278: *           elements into D
                    279: *
                    280:             DO 30 J = I, I + NB - 1
                    281:                A( J+1, J ) = E( J )
                    282:                D( J ) = A( J, J )
                    283:    30       CONTINUE
                    284:    40    CONTINUE
                    285: *
                    286: *        Use unblocked code to reduce the last or only block
                    287: *
                    288:          CALL ZHETD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
                    289:      $                TAU( I ), IINFO )
                    290:       END IF
                    291: *
                    292:       WORK( 1 ) = LWKOPT
                    293:       RETURN
                    294: *
                    295: *     End of ZHETRD
                    296: *
                    297:       END

CVSweb interface <joel.bertrand@systella.fr>