File:  [local] / rpl / lapack / lapack / zhetf2_rook.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:24 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETF2_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16            A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHETF2_ROOK computes the factorization of a complex Hermitian matrix A
   39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**H  or  A = L*D*L**H
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**H is the conjugate transpose of U, and D is
   45: *> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          Hermitian matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>
   94: *>          If UPLO = 'U':
   95: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   96: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
   97: *>
   98: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
   99: *>             columns k and -IPIV(k) were interchanged and rows and
  100: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  101: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  102: *>
  103: *>          If UPLO = 'L':
  104: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  105: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  106: *>
  107: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  108: *>             columns k and -IPIV(k) were interchanged and rows and
  109: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  110: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0: successful exit
  117: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  118: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  119: *>               has been completed, but the block diagonal matrix D is
  120: *>               exactly singular, and division by zero will occur if it
  121: *>               is used to solve a system of equations.
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee
  128: *> \author Univ. of California Berkeley
  129: *> \author Univ. of Colorado Denver
  130: *> \author NAG Ltd.
  131: *
  132: *> \ingroup complex16HEcomputational
  133: *
  134: *> \par Further Details:
  135: *  =====================
  136: *>
  137: *> \verbatim
  138: *>
  139: *>  If UPLO = 'U', then A = U*D*U**H, where
  140: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  141: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  142: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  144: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  145: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146: *>
  147: *>             (   I    v    0   )   k-s
  148: *>     U(k) =  (   0    I    0   )   s
  149: *>             (   0    0    I   )   n-k
  150: *>                k-s   s   n-k
  151: *>
  152: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  153: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  154: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  155: *>
  156: *>  If UPLO = 'L', then A = L*D*L**H, where
  157: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  158: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  159: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  161: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  162: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163: *>
  164: *>             (   I    0     0   )  k-1
  165: *>     L(k) =  (   0    I     0   )  s
  166: *>             (   0    v     I   )  n-k-s+1
  167: *>                k-1   s  n-k-s+1
  168: *>
  169: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  170: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  171: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  172: *> \endverbatim
  173: *
  174: *> \par Contributors:
  175: *  ==================
  176: *>
  177: *> \verbatim
  178: *>
  179: *>  November 2013,  Igor Kozachenko,
  180: *>                  Computer Science Division,
  181: *>                  University of California, Berkeley
  182: *>
  183: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  184: *>                  School of Mathematics,
  185: *>                  University of Manchester
  186: *>
  187: *>  01-01-96 - Based on modifications by
  188: *>    J. Lewis, Boeing Computer Services Company
  189: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  190: *> \endverbatim
  191: *
  192: *  =====================================================================
  193:       SUBROUTINE ZHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
  194: *
  195: *  -- LAPACK computational routine --
  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198: *
  199: *     .. Scalar Arguments ..
  200:       CHARACTER          UPLO
  201:       INTEGER            INFO, LDA, N
  202: *     ..
  203: *     .. Array Arguments ..
  204:       INTEGER            IPIV( * )
  205:       COMPLEX*16         A( LDA, * )
  206: *     ..
  207: *
  208: *  ======================================================================
  209: *
  210: *     .. Parameters ..
  211:       DOUBLE PRECISION   ZERO, ONE
  212:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  213:       DOUBLE PRECISION   EIGHT, SEVTEN
  214:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  215: *     ..
  216: *     .. Local Scalars ..
  217:       LOGICAL            DONE, UPPER
  218:       INTEGER            I, II, IMAX, ITEMP, J, JMAX, K, KK, KP, KSTEP,
  219:      $                   P
  220:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, DTEMP,
  221:      $                   ROWMAX, TT, SFMIN
  222:       COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, Z
  223: *     ..
  224: *     .. External Functions ..
  225: *
  226:       LOGICAL            LSAME
  227:       INTEGER            IZAMAX
  228:       DOUBLE PRECISION   DLAMCH, DLAPY2
  229:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DLAPY2
  230: *     ..
  231: *     .. External Subroutines ..
  232:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZSWAP
  233: *     ..
  234: *     .. Intrinsic Functions ..
  235:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  236: *     ..
  237: *     .. Statement Functions ..
  238:       DOUBLE PRECISION   CABS1
  239: *     ..
  240: *     .. Statement Function definitions ..
  241:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  242: *     ..
  243: *     .. Executable Statements ..
  244: *
  245: *     Test the input parameters.
  246: *
  247:       INFO = 0
  248:       UPPER = LSAME( UPLO, 'U' )
  249:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  250:          INFO = -1
  251:       ELSE IF( N.LT.0 ) THEN
  252:          INFO = -2
  253:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  254:          INFO = -4
  255:       END IF
  256:       IF( INFO.NE.0 ) THEN
  257:          CALL XERBLA( 'ZHETF2_ROOK', -INFO )
  258:          RETURN
  259:       END IF
  260: *
  261: *     Initialize ALPHA for use in choosing pivot block size.
  262: *
  263:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  264: *
  265: *     Compute machine safe minimum
  266: *
  267:       SFMIN = DLAMCH( 'S' )
  268: *
  269:       IF( UPPER ) THEN
  270: *
  271: *        Factorize A as U*D*U**H using the upper triangle of A
  272: *
  273: *        K is the main loop index, decreasing from N to 1 in steps of
  274: *        1 or 2
  275: *
  276:          K = N
  277:    10    CONTINUE
  278: *
  279: *        If K < 1, exit from loop
  280: *
  281:          IF( K.LT.1 )
  282:      $      GO TO 70
  283:          KSTEP = 1
  284:          P = K
  285: *
  286: *        Determine rows and columns to be interchanged and whether
  287: *        a 1-by-1 or 2-by-2 pivot block will be used
  288: *
  289:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  290: *
  291: *        IMAX is the row-index of the largest off-diagonal element in
  292: *        column K, and COLMAX is its absolute value.
  293: *        Determine both COLMAX and IMAX.
  294: *
  295:          IF( K.GT.1 ) THEN
  296:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  297:             COLMAX = CABS1( A( IMAX, K ) )
  298:          ELSE
  299:             COLMAX = ZERO
  300:          END IF
  301: *
  302:          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
  303: *
  304: *           Column K is zero or underflow: set INFO and continue
  305: *
  306:             IF( INFO.EQ.0 )
  307:      $         INFO = K
  308:             KP = K
  309:             A( K, K ) = DBLE( A( K, K ) )
  310:          ELSE
  311: *
  312: *           ============================================================
  313: *
  314: *           BEGIN pivot search
  315: *
  316: *           Case(1)
  317: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  318: *           (used to handle NaN and Inf)
  319: *
  320:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  321: *
  322: *              no interchange, use 1-by-1 pivot block
  323: *
  324:                KP = K
  325: *
  326:             ELSE
  327: *
  328:                DONE = .FALSE.
  329: *
  330: *              Loop until pivot found
  331: *
  332:    12          CONTINUE
  333: *
  334: *                 BEGIN pivot search loop body
  335: *
  336: *
  337: *                 JMAX is the column-index of the largest off-diagonal
  338: *                 element in row IMAX, and ROWMAX is its absolute value.
  339: *                 Determine both ROWMAX and JMAX.
  340: *
  341:                   IF( IMAX.NE.K ) THEN
  342:                      JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ),
  343:      $                                     LDA )
  344:                      ROWMAX = CABS1( A( IMAX, JMAX ) )
  345:                   ELSE
  346:                      ROWMAX = ZERO
  347:                   END IF
  348: *
  349:                   IF( IMAX.GT.1 ) THEN
  350:                      ITEMP = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  351:                      DTEMP = CABS1( A( ITEMP, IMAX ) )
  352:                      IF( DTEMP.GT.ROWMAX ) THEN
  353:                         ROWMAX = DTEMP
  354:                         JMAX = ITEMP
  355:                      END IF
  356:                   END IF
  357: *
  358: *                 Case(2)
  359: *                 Equivalent to testing for
  360: *                 ABS( DBLE( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
  361: *                 (used to handle NaN and Inf)
  362: *
  363:                   IF( .NOT.( ABS( DBLE( A( IMAX, IMAX ) ) )
  364:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  365: *
  366: *                    interchange rows and columns K and IMAX,
  367: *                    use 1-by-1 pivot block
  368: *
  369:                      KP = IMAX
  370:                      DONE = .TRUE.
  371: *
  372: *                 Case(3)
  373: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  374: *                 (used to handle NaN and Inf)
  375: *
  376:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  377:      $            THEN
  378: *
  379: *                    interchange rows and columns K-1 and IMAX,
  380: *                    use 2-by-2 pivot block
  381: *
  382:                      KP = IMAX
  383:                      KSTEP = 2
  384:                      DONE = .TRUE.
  385: *
  386: *                 Case(4)
  387:                   ELSE
  388: *
  389: *                    Pivot not found: set params and repeat
  390: *
  391:                      P = IMAX
  392:                      COLMAX = ROWMAX
  393:                      IMAX = JMAX
  394:                   END IF
  395: *
  396: *                 END pivot search loop body
  397: *
  398:                IF( .NOT.DONE ) GOTO 12
  399: *
  400:             END IF
  401: *
  402: *           END pivot search
  403: *
  404: *           ============================================================
  405: *
  406: *           KK is the column of A where pivoting step stopped
  407: *
  408:             KK = K - KSTEP + 1
  409: *
  410: *           For only a 2x2 pivot, interchange rows and columns K and P
  411: *           in the leading submatrix A(1:k,1:k)
  412: *
  413:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  414: *              (1) Swap columnar parts
  415:                IF( P.GT.1 )
  416:      $            CALL ZSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  417: *              (2) Swap and conjugate middle parts
  418:                DO 14 J = P + 1, K - 1
  419:                   T = DCONJG( A( J, K ) )
  420:                   A( J, K ) = DCONJG( A( P, J ) )
  421:                   A( P, J ) = T
  422:    14          CONTINUE
  423: *              (3) Swap and conjugate corner elements at row-col interserction
  424:                A( P, K ) = DCONJG( A( P, K ) )
  425: *              (4) Swap diagonal elements at row-col intersection
  426:                R1 = DBLE( A( K, K ) )
  427:                A( K, K ) = DBLE( A( P, P ) )
  428:                A( P, P ) = R1
  429:             END IF
  430: *
  431: *           For both 1x1 and 2x2 pivots, interchange rows and
  432: *           columns KK and KP in the leading submatrix A(1:k,1:k)
  433: *
  434:             IF( KP.NE.KK ) THEN
  435: *              (1) Swap columnar parts
  436:                IF( KP.GT.1 )
  437:      $            CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  438: *              (2) Swap and conjugate middle parts
  439:                DO 15 J = KP + 1, KK - 1
  440:                   T = DCONJG( A( J, KK ) )
  441:                   A( J, KK ) = DCONJG( A( KP, J ) )
  442:                   A( KP, J ) = T
  443:    15          CONTINUE
  444: *              (3) Swap and conjugate corner elements at row-col interserction
  445:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  446: *              (4) Swap diagonal elements at row-col intersection
  447:                R1 = DBLE( A( KK, KK ) )
  448:                A( KK, KK ) = DBLE( A( KP, KP ) )
  449:                A( KP, KP ) = R1
  450: *
  451:                IF( KSTEP.EQ.2 ) THEN
  452: *                 (*) Make sure that diagonal element of pivot is real
  453:                   A( K, K ) = DBLE( A( K, K ) )
  454: *                 (5) Swap row elements
  455:                   T = A( K-1, K )
  456:                   A( K-1, K ) = A( KP, K )
  457:                   A( KP, K ) = T
  458:                END IF
  459:             ELSE
  460: *              (*) Make sure that diagonal element of pivot is real
  461:                A( K, K ) = DBLE( A( K, K ) )
  462:                IF( KSTEP.EQ.2 )
  463:      $            A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
  464:             END IF
  465: *
  466: *           Update the leading submatrix
  467: *
  468:             IF( KSTEP.EQ.1 ) THEN
  469: *
  470: *              1-by-1 pivot block D(k): column k now holds
  471: *
  472: *              W(k) = U(k)*D(k)
  473: *
  474: *              where U(k) is the k-th column of U
  475: *
  476:                IF( K.GT.1 ) THEN
  477: *
  478: *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
  479: *                 store U(k) in column k
  480: *
  481:                   IF( ABS( DBLE( A( K, K ) ) ).GE.SFMIN ) THEN
  482: *
  483: *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
  484: *                    A := A - U(k)*D(k)*U(k)**T
  485: *                       = A - W(k)*1/D(k)*W(k)**T
  486: *
  487:                      D11 = ONE / DBLE( A( K, K ) )
  488:                      CALL ZHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  489: *
  490: *                    Store U(k) in column k
  491: *
  492:                      CALL ZDSCAL( K-1, D11, A( 1, K ), 1 )
  493:                   ELSE
  494: *
  495: *                    Store L(k) in column K
  496: *
  497:                      D11 = DBLE( A( K, K ) )
  498:                      DO 16 II = 1, K - 1
  499:                         A( II, K ) = A( II, K ) / D11
  500:    16                CONTINUE
  501: *
  502: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  503: *                    A := A - U(k)*D(k)*U(k)**T
  504: *                       = A - W(k)*(1/D(k))*W(k)**T
  505: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  506: *
  507:                      CALL ZHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  508:                   END IF
  509:                END IF
  510: *
  511:             ELSE
  512: *
  513: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  514: *
  515: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  516: *
  517: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  518: *              of U
  519: *
  520: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  521: *
  522: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  523: *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
  524: *
  525: *              and store L(k) and L(k+1) in columns k and k+1
  526: *
  527:                IF( K.GT.2 ) THEN
  528: *                 D = |A12|
  529:                   D = DLAPY2( DBLE( A( K-1, K ) ),
  530:      $                DIMAG( A( K-1, K ) ) )
  531:                   D11 = DBLE( A( K, K ) / D )
  532:                   D22 = DBLE( A( K-1, K-1 ) / D )
  533:                   D12 = A( K-1, K ) / D
  534:                   TT = ONE / ( D11*D22-ONE )
  535: *
  536:                   DO 30 J = K - 2, 1, -1
  537: *
  538: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  539: *
  540:                      WKM1 = TT*( D11*A( J, K-1 )-DCONJG( D12 )*
  541:      $                      A( J, K ) )
  542:                      WK = TT*( D22*A( J, K )-D12*A( J, K-1 ) )
  543: *
  544: *                    Perform a rank-2 update of A(1:k-2,1:k-2)
  545: *
  546:                      DO 20 I = J, 1, -1
  547:                         A( I, J ) = A( I, J ) -
  548:      $                              ( A( I, K ) / D )*DCONJG( WK ) -
  549:      $                              ( A( I, K-1 ) / D )*DCONJG( WKM1 )
  550:    20                CONTINUE
  551: *
  552: *                    Store U(k) and U(k-1) in cols k and k-1 for row J
  553: *
  554:                      A( J, K ) = WK / D
  555:                      A( J, K-1 ) = WKM1 / D
  556: *                    (*) Make sure that diagonal element of pivot is real
  557:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), ZERO )
  558: *
  559:    30             CONTINUE
  560: *
  561:                END IF
  562: *
  563:             END IF
  564: *
  565:          END IF
  566: *
  567: *        Store details of the interchanges in IPIV
  568: *
  569:          IF( KSTEP.EQ.1 ) THEN
  570:             IPIV( K ) = KP
  571:          ELSE
  572:             IPIV( K ) = -P
  573:             IPIV( K-1 ) = -KP
  574:          END IF
  575: *
  576: *        Decrease K and return to the start of the main loop
  577: *
  578:          K = K - KSTEP
  579:          GO TO 10
  580: *
  581:       ELSE
  582: *
  583: *        Factorize A as L*D*L**H using the lower triangle of A
  584: *
  585: *        K is the main loop index, increasing from 1 to N in steps of
  586: *        1 or 2
  587: *
  588:          K = 1
  589:    40    CONTINUE
  590: *
  591: *        If K > N, exit from loop
  592: *
  593:          IF( K.GT.N )
  594:      $      GO TO 70
  595:          KSTEP = 1
  596:          P = K
  597: *
  598: *        Determine rows and columns to be interchanged and whether
  599: *        a 1-by-1 or 2-by-2 pivot block will be used
  600: *
  601:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  602: *
  603: *        IMAX is the row-index of the largest off-diagonal element in
  604: *        column K, and COLMAX is its absolute value.
  605: *        Determine both COLMAX and IMAX.
  606: *
  607:          IF( K.LT.N ) THEN
  608:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  609:             COLMAX = CABS1( A( IMAX, K ) )
  610:          ELSE
  611:             COLMAX = ZERO
  612:          END IF
  613: *
  614:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  615: *
  616: *           Column K is zero or underflow: set INFO and continue
  617: *
  618:             IF( INFO.EQ.0 )
  619:      $         INFO = K
  620:             KP = K
  621:             A( K, K ) = DBLE( A( K, K ) )
  622:          ELSE
  623: *
  624: *           ============================================================
  625: *
  626: *           BEGIN pivot search
  627: *
  628: *           Case(1)
  629: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  630: *           (used to handle NaN and Inf)
  631: *
  632:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  633: *
  634: *              no interchange, use 1-by-1 pivot block
  635: *
  636:                KP = K
  637: *
  638:             ELSE
  639: *
  640:                DONE = .FALSE.
  641: *
  642: *              Loop until pivot found
  643: *
  644:    42          CONTINUE
  645: *
  646: *                 BEGIN pivot search loop body
  647: *
  648: *
  649: *                 JMAX is the column-index of the largest off-diagonal
  650: *                 element in row IMAX, and ROWMAX is its absolute value.
  651: *                 Determine both ROWMAX and JMAX.
  652: *
  653:                   IF( IMAX.NE.K ) THEN
  654:                      JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  655:                      ROWMAX = CABS1( A( IMAX, JMAX ) )
  656:                   ELSE
  657:                      ROWMAX = ZERO
  658:                   END IF
  659: *
  660:                   IF( IMAX.LT.N ) THEN
  661:                      ITEMP = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ),
  662:      $                                     1 )
  663:                      DTEMP = CABS1( A( ITEMP, IMAX ) )
  664:                      IF( DTEMP.GT.ROWMAX ) THEN
  665:                         ROWMAX = DTEMP
  666:                         JMAX = ITEMP
  667:                      END IF
  668:                   END IF
  669: *
  670: *                 Case(2)
  671: *                 Equivalent to testing for
  672: *                 ABS( DBLE( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
  673: *                 (used to handle NaN and Inf)
  674: *
  675:                   IF( .NOT.( ABS( DBLE( A( IMAX, IMAX ) ) )
  676:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  677: *
  678: *                    interchange rows and columns K and IMAX,
  679: *                    use 1-by-1 pivot block
  680: *
  681:                      KP = IMAX
  682:                      DONE = .TRUE.
  683: *
  684: *                 Case(3)
  685: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  686: *                 (used to handle NaN and Inf)
  687: *
  688:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  689:      $            THEN
  690: *
  691: *                    interchange rows and columns K+1 and IMAX,
  692: *                    use 2-by-2 pivot block
  693: *
  694:                      KP = IMAX
  695:                      KSTEP = 2
  696:                      DONE = .TRUE.
  697: *
  698: *                 Case(4)
  699:                   ELSE
  700: *
  701: *                    Pivot not found: set params and repeat
  702: *
  703:                      P = IMAX
  704:                      COLMAX = ROWMAX
  705:                      IMAX = JMAX
  706:                   END IF
  707: *
  708: *
  709: *                 END pivot search loop body
  710: *
  711:                IF( .NOT.DONE ) GOTO 42
  712: *
  713:             END IF
  714: *
  715: *           END pivot search
  716: *
  717: *           ============================================================
  718: *
  719: *           KK is the column of A where pivoting step stopped
  720: *
  721:             KK = K + KSTEP - 1
  722: *
  723: *           For only a 2x2 pivot, interchange rows and columns K and P
  724: *           in the trailing submatrix A(k:n,k:n)
  725: *
  726:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  727: *              (1) Swap columnar parts
  728:                IF( P.LT.N )
  729:      $            CALL ZSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  730: *              (2) Swap and conjugate middle parts
  731:                DO 44 J = K + 1, P - 1
  732:                   T = DCONJG( A( J, K ) )
  733:                   A( J, K ) = DCONJG( A( P, J ) )
  734:                   A( P, J ) = T
  735:    44          CONTINUE
  736: *              (3) Swap and conjugate corner elements at row-col interserction
  737:                A( P, K ) = DCONJG( A( P, K ) )
  738: *              (4) Swap diagonal elements at row-col intersection
  739:                R1 = DBLE( A( K, K ) )
  740:                A( K, K ) = DBLE( A( P, P ) )
  741:                A( P, P ) = R1
  742:             END IF
  743: *
  744: *           For both 1x1 and 2x2 pivots, interchange rows and
  745: *           columns KK and KP in the trailing submatrix A(k:n,k:n)
  746: *
  747:             IF( KP.NE.KK ) THEN
  748: *              (1) Swap columnar parts
  749:                IF( KP.LT.N )
  750:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  751: *              (2) Swap and conjugate middle parts
  752:                DO 45 J = KK + 1, KP - 1
  753:                   T = DCONJG( A( J, KK ) )
  754:                   A( J, KK ) = DCONJG( A( KP, J ) )
  755:                   A( KP, J ) = T
  756:    45          CONTINUE
  757: *              (3) Swap and conjugate corner elements at row-col interserction
  758:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  759: *              (4) Swap diagonal elements at row-col intersection
  760:                R1 = DBLE( A( KK, KK ) )
  761:                A( KK, KK ) = DBLE( A( KP, KP ) )
  762:                A( KP, KP ) = R1
  763: *
  764:                IF( KSTEP.EQ.2 ) THEN
  765: *                 (*) Make sure that diagonal element of pivot is real
  766:                   A( K, K ) = DBLE( A( K, K ) )
  767: *                 (5) Swap row elements
  768:                   T = A( K+1, K )
  769:                   A( K+1, K ) = A( KP, K )
  770:                   A( KP, K ) = T
  771:                END IF
  772:             ELSE
  773: *              (*) Make sure that diagonal element of pivot is real
  774:                A( K, K ) = DBLE( A( K, K ) )
  775:                IF( KSTEP.EQ.2 )
  776:      $            A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
  777:             END IF
  778: *
  779: *           Update the trailing submatrix
  780: *
  781:             IF( KSTEP.EQ.1 ) THEN
  782: *
  783: *              1-by-1 pivot block D(k): column k of A now holds
  784: *
  785: *              W(k) = L(k)*D(k),
  786: *
  787: *              where L(k) is the k-th column of L
  788: *
  789:                IF( K.LT.N ) THEN
  790: *
  791: *                 Perform a rank-1 update of A(k+1:n,k+1:n) and
  792: *                 store L(k) in column k
  793: *
  794: *                 Handle division by a small number
  795: *
  796:                   IF( ABS( DBLE( A( K, K ) ) ).GE.SFMIN ) THEN
  797: *
  798: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  799: *                    A := A - L(k)*D(k)*L(k)**T
  800: *                       = A - W(k)*(1/D(k))*W(k)**T
  801: *
  802:                      D11 = ONE / DBLE( A( K, K ) )
  803:                      CALL ZHER( UPLO, N-K, -D11, A( K+1, K ), 1,
  804:      $                          A( K+1, K+1 ), LDA )
  805: *
  806: *                    Store L(k) in column k
  807: *
  808:                      CALL ZDSCAL( N-K, D11, A( K+1, K ), 1 )
  809:                   ELSE
  810: *
  811: *                    Store L(k) in column k
  812: *
  813:                      D11 = DBLE( A( K, K ) )
  814:                      DO 46 II = K + 1, N
  815:                         A( II, K ) = A( II, K ) / D11
  816:    46                CONTINUE
  817: *
  818: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  819: *                    A := A - L(k)*D(k)*L(k)**T
  820: *                       = A - W(k)*(1/D(k))*W(k)**T
  821: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  822: *
  823:                      CALL ZHER( UPLO, N-K, -D11, A( K+1, K ), 1,
  824:      $                          A( K+1, K+1 ), LDA )
  825:                   END IF
  826:                END IF
  827: *
  828:             ELSE
  829: *
  830: *              2-by-2 pivot block D(k): columns k and k+1 now hold
  831: *
  832: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  833: *
  834: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  835: *              of L
  836: *
  837: *
  838: *              Perform a rank-2 update of A(k+2:n,k+2:n) as
  839: *
  840: *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
  841: *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
  842: *
  843: *              and store L(k) and L(k+1) in columns k and k+1
  844: *
  845:                IF( K.LT.N-1 ) THEN
  846: *                 D = |A21|
  847:                   D = DLAPY2( DBLE( A( K+1, K ) ),
  848:      $                DIMAG( A( K+1, K ) ) )
  849:                   D11 = DBLE( A( K+1, K+1 ) ) / D
  850:                   D22 = DBLE( A( K, K ) ) / D
  851:                   D21 = A( K+1, K ) / D
  852:                   TT = ONE / ( D11*D22-ONE )
  853: *
  854:                   DO 60 J = K + 2, N
  855: *
  856: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  857: *
  858:                      WK = TT*( D11*A( J, K )-D21*A( J, K+1 ) )
  859:                      WKP1 = TT*( D22*A( J, K+1 )-DCONJG( D21 )*
  860:      $                      A( J, K ) )
  861: *
  862: *                    Perform a rank-2 update of A(k+2:n,k+2:n)
  863: *
  864:                      DO 50 I = J, N
  865:                         A( I, J ) = A( I, J ) -
  866:      $                              ( A( I, K ) / D )*DCONJG( WK ) -
  867:      $                              ( A( I, K+1 ) / D )*DCONJG( WKP1 )
  868:    50                CONTINUE
  869: *
  870: *                    Store L(k) and L(k+1) in cols k and k+1 for row J
  871: *
  872:                      A( J, K ) = WK / D
  873:                      A( J, K+1 ) = WKP1 / D
  874: *                    (*) Make sure that diagonal element of pivot is real
  875:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), ZERO )
  876: *
  877:    60             CONTINUE
  878: *
  879:                END IF
  880: *
  881:             END IF
  882: *
  883:          END IF
  884: *
  885: *        Store details of the interchanges in IPIV
  886: *
  887:          IF( KSTEP.EQ.1 ) THEN
  888:             IPIV( K ) = KP
  889:          ELSE
  890:             IPIV( K ) = -P
  891:             IPIV( K+1 ) = -KP
  892:          END IF
  893: *
  894: *        Increase K and return to the start of the main loop
  895: *
  896:          K = K + KSTEP
  897:          GO TO 40
  898: *
  899:       END IF
  900: *
  901:    70 CONTINUE
  902: *
  903:       RETURN
  904: *
  905: *     End of ZHETF2_ROOK
  906: *
  907:       END

CVSweb interface <joel.bertrand@systella.fr>