File:  [local] / rpl / lapack / lapack / zhetf2_rk.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:02:54 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour lapack 3.7.0.

    1: *> \brief \b ZHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETF2_RK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2_rk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2_rk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2_rk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), E ( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *> ZHETF2_RK computes the factorization of a complex Hermitian matrix A
   38: *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
   39: *>
   40: *>    A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
   41: *>
   42: *> where U (or L) is unit upper (or lower) triangular matrix,
   43: *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
   44: *> matrix, P**T is the transpose of P, and D is Hermitian and block
   45: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> For more information see Further Details section.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] UPLO
   55: *> \verbatim
   56: *>          UPLO is CHARACTER*1
   57: *>          Specifies whether the upper or lower triangular part of the
   58: *>          Hermitian matrix A is stored:
   59: *>          = 'U':  Upper triangular
   60: *>          = 'L':  Lower triangular
   61: *> \endverbatim
   62: *>
   63: *> \param[in] N
   64: *> \verbatim
   65: *>          N is INTEGER
   66: *>          The order of the matrix A.  N >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in,out] A
   70: *> \verbatim
   71: *>          A is COMPLEX*16 array, dimension (LDA,N)
   72: *>          On entry, the Hermitian matrix A.
   73: *>            If UPLO = 'U': the leading N-by-N upper triangular part
   74: *>            of A contains the upper triangular part of the matrix A,
   75: *>            and the strictly lower triangular part of A is not
   76: *>            referenced.
   77: *>
   78: *>            If UPLO = 'L': the leading N-by-N lower triangular part
   79: *>            of A contains the lower triangular part of the matrix A,
   80: *>            and the strictly upper triangular part of A is not
   81: *>            referenced.
   82: *>
   83: *>          On exit, contains:
   84: *>            a) ONLY diagonal elements of the Hermitian block diagonal
   85: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
   86: *>               (superdiagonal (or subdiagonal) elements of D
   87: *>                are stored on exit in array E), and
   88: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
   89: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDA
   93: *> \verbatim
   94: *>          LDA is INTEGER
   95: *>          The leading dimension of the array A.  LDA >= max(1,N).
   96: *> \endverbatim
   97: *>
   98: *> \param[out] E
   99: *> \verbatim
  100: *>          E is COMPLEX*16 array, dimension (N)
  101: *>          On exit, contains the superdiagonal (or subdiagonal)
  102: *>          elements of the Hermitian block diagonal matrix D
  103: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  104: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
  105: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
  106: *>
  107: *>          NOTE: For 1-by-1 diagonal block D(k), where
  108: *>          1 <= k <= N, the element E(k) is set to 0 in both
  109: *>          UPLO = 'U' or UPLO = 'L' cases.
  110: *> \endverbatim
  111: *>
  112: *> \param[out] IPIV
  113: *> \verbatim
  114: *>          IPIV is INTEGER array, dimension (N)
  115: *>          IPIV describes the permutation matrix P in the factorization
  116: *>          of matrix A as follows. The absolute value of IPIV(k)
  117: *>          represents the index of row and column that were
  118: *>          interchanged with the k-th row and column. The value of UPLO
  119: *>          describes the order in which the interchanges were applied.
  120: *>          Also, the sign of IPIV represents the block structure of
  121: *>          the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
  122: *>          diagonal blocks which correspond to 1 or 2 interchanges
  123: *>          at each factorization step. For more info see Further
  124: *>          Details section.
  125: *>
  126: *>          If UPLO = 'U',
  127: *>          ( in factorization order, k decreases from N to 1 ):
  128: *>            a) A single positive entry IPIV(k) > 0 means:
  129: *>               D(k,k) is a 1-by-1 diagonal block.
  130: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  131: *>               interchanged in the matrix A(1:N,1:N);
  132: *>               If IPIV(k) = k, no interchange occurred.
  133: *>
  134: *>            b) A pair of consecutive negative entries
  135: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
  136: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  137: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  138: *>               1) If -IPIV(k) != k, rows and columns
  139: *>                  k and -IPIV(k) were interchanged
  140: *>                  in the matrix A(1:N,1:N).
  141: *>                  If -IPIV(k) = k, no interchange occurred.
  142: *>               2) If -IPIV(k-1) != k-1, rows and columns
  143: *>                  k-1 and -IPIV(k-1) were interchanged
  144: *>                  in the matrix A(1:N,1:N).
  145: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
  146: *>
  147: *>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
  148: *>
  149: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  150: *>
  151: *>          If UPLO = 'L',
  152: *>          ( in factorization order, k increases from 1 to N ):
  153: *>            a) A single positive entry IPIV(k) > 0 means:
  154: *>               D(k,k) is a 1-by-1 diagonal block.
  155: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  156: *>               interchanged in the matrix A(1:N,1:N).
  157: *>               If IPIV(k) = k, no interchange occurred.
  158: *>
  159: *>            b) A pair of consecutive negative entries
  160: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
  161: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  162: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  163: *>               1) If -IPIV(k) != k, rows and columns
  164: *>                  k and -IPIV(k) were interchanged
  165: *>                  in the matrix A(1:N,1:N).
  166: *>                  If -IPIV(k) = k, no interchange occurred.
  167: *>               2) If -IPIV(k+1) != k+1, rows and columns
  168: *>                  k-1 and -IPIV(k-1) were interchanged
  169: *>                  in the matrix A(1:N,1:N).
  170: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
  171: *>
  172: *>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
  173: *>
  174: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0: successful exit
  181: *>
  182: *>          < 0: If INFO = -k, the k-th argument had an illegal value
  183: *>
  184: *>          > 0: If INFO = k, the matrix A is singular, because:
  185: *>                 If UPLO = 'U': column k in the upper
  186: *>                 triangular part of A contains all zeros.
  187: *>                 If UPLO = 'L': column k in the lower
  188: *>                 triangular part of A contains all zeros.
  189: *>
  190: *>               Therefore D(k,k) is exactly zero, and superdiagonal
  191: *>               elements of column k of U (or subdiagonal elements of
  192: *>               column k of L ) are all zeros. The factorization has
  193: *>               been completed, but the block diagonal matrix D is
  194: *>               exactly singular, and division by zero will occur if
  195: *>               it is used to solve a system of equations.
  196: *>
  197: *>               NOTE: INFO only stores the first occurrence of
  198: *>               a singularity, any subsequent occurrence of singularity
  199: *>               is not stored in INFO even though the factorization
  200: *>               always completes.
  201: *> \endverbatim
  202: *
  203: *  Authors:
  204: *  ========
  205: *
  206: *> \author Univ. of Tennessee
  207: *> \author Univ. of California Berkeley
  208: *> \author Univ. of Colorado Denver
  209: *> \author NAG Ltd.
  210: *
  211: *> \date December 2016
  212: *
  213: *> \ingroup complex16HEcomputational
  214: *
  215: *> \par Further Details:
  216: *  =====================
  217: *>
  218: *> \verbatim
  219: *> TODO: put further details
  220: *> \endverbatim
  221: *
  222: *> \par Contributors:
  223: *  ==================
  224: *>
  225: *> \verbatim
  226: *>
  227: *>  December 2016,  Igor Kozachenko,
  228: *>                  Computer Science Division,
  229: *>                  University of California, Berkeley
  230: *>
  231: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  232: *>                  School of Mathematics,
  233: *>                  University of Manchester
  234: *>
  235: *>  01-01-96 - Based on modifications by
  236: *>    J. Lewis, Boeing Computer Services Company
  237: *>    A. Petitet, Computer Science Dept.,
  238: *>                Univ. of Tenn., Knoxville abd , USA
  239: *> \endverbatim
  240: *
  241: *  =====================================================================
  242:       SUBROUTINE ZHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
  243: *
  244: *  -- LAPACK computational routine (version 3.7.0) --
  245: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  246: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247: *     December 2016
  248: *
  249: *     .. Scalar Arguments ..
  250:       CHARACTER          UPLO
  251:       INTEGER            INFO, LDA, N
  252: *     ..
  253: *     .. Array Arguments ..
  254:       INTEGER            IPIV( * )
  255:       COMPLEX*16         A( LDA, * ), E( * )
  256: *     ..
  257: *
  258: *  ======================================================================
  259: *
  260: *     .. Parameters ..
  261:       DOUBLE PRECISION   ZERO, ONE
  262:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  263:       DOUBLE PRECISION   EIGHT, SEVTEN
  264:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  265:       COMPLEX*16         CZERO
  266:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  267: *     ..
  268: *     .. Local Scalars ..
  269:       LOGICAL            DONE, UPPER
  270:       INTEGER            I, II, IMAX, ITEMP, J, JMAX, K, KK, KP, KSTEP,
  271:      $                   P
  272:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, DTEMP,
  273:      $                   ROWMAX, TT, SFMIN
  274:       COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, Z
  275: *     ..
  276: *     .. External Functions ..
  277: *
  278:       LOGICAL            LSAME
  279:       INTEGER            IZAMAX
  280:       DOUBLE PRECISION   DLAMCH, DLAPY2
  281:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DLAPY2
  282: *     ..
  283: *     .. External Subroutines ..
  284:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZSWAP
  285: *     ..
  286: *     .. Intrinsic Functions ..
  287:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  288: *     ..
  289: *     .. Statement Functions ..
  290:       DOUBLE PRECISION   CABS1
  291: *     ..
  292: *     .. Statement Function definitions ..
  293:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  294: *     ..
  295: *     .. Executable Statements ..
  296: *
  297: *     Test the input parameters.
  298: *
  299:       INFO = 0
  300:       UPPER = LSAME( UPLO, 'U' )
  301:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  302:          INFO = -1
  303:       ELSE IF( N.LT.0 ) THEN
  304:          INFO = -2
  305:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  306:          INFO = -4
  307:       END IF
  308:       IF( INFO.NE.0 ) THEN
  309:          CALL XERBLA( 'ZHETF2_RK', -INFO )
  310:          RETURN
  311:       END IF
  312: *
  313: *     Initialize ALPHA for use in choosing pivot block size.
  314: *
  315:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  316: *
  317: *     Compute machine safe minimum
  318: *
  319:       SFMIN = DLAMCH( 'S' )
  320: *
  321:       IF( UPPER ) THEN
  322: *
  323: *        Factorize A as U*D*U**H using the upper triangle of A
  324: *
  325: *        Initilize the first entry of array E, where superdiagonal
  326: *        elements of D are stored
  327: *
  328:          E( 1 ) = CZERO
  329: *
  330: *        K is the main loop index, decreasing from N to 1 in steps of
  331: *        1 or 2
  332: *
  333:          K = N
  334:    10    CONTINUE
  335: *
  336: *        If K < 1, exit from loop
  337: *
  338:          IF( K.LT.1 )
  339:      $      GO TO 34
  340:          KSTEP = 1
  341:          P = K
  342: *
  343: *        Determine rows and columns to be interchanged and whether
  344: *        a 1-by-1 or 2-by-2 pivot block will be used
  345: *
  346:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  347: *
  348: *        IMAX is the row-index of the largest off-diagonal element in
  349: *        column K, and COLMAX is its absolute value.
  350: *        Determine both COLMAX and IMAX.
  351: *
  352:          IF( K.GT.1 ) THEN
  353:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  354:             COLMAX = CABS1( A( IMAX, K ) )
  355:          ELSE
  356:             COLMAX = ZERO
  357:          END IF
  358: *
  359:          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
  360: *
  361: *           Column K is zero or underflow: set INFO and continue
  362: *
  363:             IF( INFO.EQ.0 )
  364:      $         INFO = K
  365:             KP = K
  366:             A( K, K ) = DBLE( A( K, K ) )
  367: *
  368: *           Set E( K ) to zero
  369: *
  370:             IF( K.GT.1 )
  371:      $         E( K ) = CZERO
  372: *
  373:          ELSE
  374: *
  375: *           ============================================================
  376: *
  377: *           BEGIN pivot search
  378: *
  379: *           Case(1)
  380: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  381: *           (used to handle NaN and Inf)
  382: *
  383:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  384: *
  385: *              no interchange, use 1-by-1 pivot block
  386: *
  387:                KP = K
  388: *
  389:             ELSE
  390: *
  391:                DONE = .FALSE.
  392: *
  393: *              Loop until pivot found
  394: *
  395:    12          CONTINUE
  396: *
  397: *                 BEGIN pivot search loop body
  398: *
  399: *
  400: *                 JMAX is the column-index of the largest off-diagonal
  401: *                 element in row IMAX, and ROWMAX is its absolute value.
  402: *                 Determine both ROWMAX and JMAX.
  403: *
  404:                   IF( IMAX.NE.K ) THEN
  405:                      JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ),
  406:      $                                     LDA )
  407:                      ROWMAX = CABS1( A( IMAX, JMAX ) )
  408:                   ELSE
  409:                      ROWMAX = ZERO
  410:                   END IF
  411: *
  412:                   IF( IMAX.GT.1 ) THEN
  413:                      ITEMP = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  414:                      DTEMP = CABS1( A( ITEMP, IMAX ) )
  415:                      IF( DTEMP.GT.ROWMAX ) THEN
  416:                         ROWMAX = DTEMP
  417:                         JMAX = ITEMP
  418:                      END IF
  419:                   END IF
  420: *
  421: *                 Case(2)
  422: *                 Equivalent to testing for
  423: *                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
  424: *                 (used to handle NaN and Inf)
  425: *
  426:                   IF( .NOT.( ABS( DBLE( A( IMAX, IMAX ) ) )
  427:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  428: *
  429: *                    interchange rows and columns K and IMAX,
  430: *                    use 1-by-1 pivot block
  431: *
  432:                      KP = IMAX
  433:                      DONE = .TRUE.
  434: *
  435: *                 Case(3)
  436: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  437: *                 (used to handle NaN and Inf)
  438: *
  439:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  440:      $            THEN
  441: *
  442: *                    interchange rows and columns K-1 and IMAX,
  443: *                    use 2-by-2 pivot block
  444: *
  445:                      KP = IMAX
  446:                      KSTEP = 2
  447:                      DONE = .TRUE.
  448: *
  449: *                 Case(4)
  450:                   ELSE
  451: *
  452: *                    Pivot not found: set params and repeat
  453: *
  454:                      P = IMAX
  455:                      COLMAX = ROWMAX
  456:                      IMAX = JMAX
  457:                   END IF
  458: *
  459: *                 END pivot search loop body
  460: *
  461:                IF( .NOT.DONE ) GOTO 12
  462: *
  463:             END IF
  464: *
  465: *           END pivot search
  466: *
  467: *           ============================================================
  468: *
  469: *           KK is the column of A where pivoting step stopped
  470: *
  471:             KK = K - KSTEP + 1
  472: *
  473: *           For only a 2x2 pivot, interchange rows and columns K and P
  474: *           in the leading submatrix A(1:k,1:k)
  475: *
  476:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  477: *              (1) Swap columnar parts
  478:                IF( P.GT.1 )
  479:      $            CALL ZSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  480: *              (2) Swap and conjugate middle parts
  481:                DO 14 J = P + 1, K - 1
  482:                   T = DCONJG( A( J, K ) )
  483:                   A( J, K ) = DCONJG( A( P, J ) )
  484:                   A( P, J ) = T
  485:    14          CONTINUE
  486: *              (3) Swap and conjugate corner elements at row-col interserction
  487:                A( P, K ) = DCONJG( A( P, K ) )
  488: *              (4) Swap diagonal elements at row-col intersection
  489:                R1 = DBLE( A( K, K ) )
  490:                A( K, K ) = DBLE( A( P, P ) )
  491:                A( P, P ) = R1
  492: *
  493: *              Convert upper triangle of A into U form by applying
  494: *              the interchanges in columns k+1:N.
  495: *
  496:                IF( K.LT.N )
  497:      $            CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ), LDA )
  498: *
  499:             END IF
  500: *
  501: *           For both 1x1 and 2x2 pivots, interchange rows and
  502: *           columns KK and KP in the leading submatrix A(1:k,1:k)
  503: *
  504:             IF( KP.NE.KK ) THEN
  505: *              (1) Swap columnar parts
  506:                IF( KP.GT.1 )
  507:      $            CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  508: *              (2) Swap and conjugate middle parts
  509:                DO 15 J = KP + 1, KK - 1
  510:                   T = DCONJG( A( J, KK ) )
  511:                   A( J, KK ) = DCONJG( A( KP, J ) )
  512:                   A( KP, J ) = T
  513:    15          CONTINUE
  514: *              (3) Swap and conjugate corner elements at row-col interserction
  515:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  516: *              (4) Swap diagonal elements at row-col intersection
  517:                R1 = DBLE( A( KK, KK ) )
  518:                A( KK, KK ) = DBLE( A( KP, KP ) )
  519:                A( KP, KP ) = R1
  520: *
  521:                IF( KSTEP.EQ.2 ) THEN
  522: *                 (*) Make sure that diagonal element of pivot is real
  523:                   A( K, K ) = DBLE( A( K, K ) )
  524: *                 (5) Swap row elements
  525:                   T = A( K-1, K )
  526:                   A( K-1, K ) = A( KP, K )
  527:                   A( KP, K ) = T
  528:                END IF
  529: *
  530: *              Convert upper triangle of A into U form by applying
  531: *              the interchanges in columns k+1:N.
  532: *
  533:                IF( K.LT.N )
  534:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  535:      $                        LDA )
  536: *
  537:             ELSE
  538: *              (*) Make sure that diagonal element of pivot is real
  539:                A( K, K ) = DBLE( A( K, K ) )
  540:                IF( KSTEP.EQ.2 )
  541:      $            A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
  542:             END IF
  543: *
  544: *           Update the leading submatrix
  545: *
  546:             IF( KSTEP.EQ.1 ) THEN
  547: *
  548: *              1-by-1 pivot block D(k): column k now holds
  549: *
  550: *              W(k) = U(k)*D(k)
  551: *
  552: *              where U(k) is the k-th column of U
  553: *
  554:                IF( K.GT.1 ) THEN
  555: *
  556: *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
  557: *                 store U(k) in column k
  558: *
  559:                   IF( ABS( DBLE( A( K, K ) ) ).GE.SFMIN ) THEN
  560: *
  561: *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
  562: *                    A := A - U(k)*D(k)*U(k)**T
  563: *                       = A - W(k)*1/D(k)*W(k)**T
  564: *
  565:                      D11 = ONE / DBLE( A( K, K ) )
  566:                      CALL ZHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  567: *
  568: *                    Store U(k) in column k
  569: *
  570:                      CALL ZDSCAL( K-1, D11, A( 1, K ), 1 )
  571:                   ELSE
  572: *
  573: *                    Store L(k) in column K
  574: *
  575:                      D11 = DBLE( A( K, K ) )
  576:                      DO 16 II = 1, K - 1
  577:                         A( II, K ) = A( II, K ) / D11
  578:    16                CONTINUE
  579: *
  580: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  581: *                    A := A - U(k)*D(k)*U(k)**T
  582: *                       = A - W(k)*(1/D(k))*W(k)**T
  583: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  584: *
  585:                      CALL ZHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  586:                   END IF
  587: *
  588: *                 Store the superdiagonal element of D in array E
  589: *
  590:                   E( K ) = CZERO
  591: *
  592:                END IF
  593: *
  594:             ELSE
  595: *
  596: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  597: *
  598: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  599: *
  600: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  601: *              of U
  602: *
  603: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  604: *
  605: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  606: *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
  607: *
  608: *              and store L(k) and L(k+1) in columns k and k+1
  609: *
  610:                IF( K.GT.2 ) THEN
  611: *                 D = |A12|
  612:                   D = DLAPY2( DBLE( A( K-1, K ) ),
  613:      $                DIMAG( A( K-1, K ) ) )
  614:                   D11 = A( K, K ) / D
  615:                   D22 = A( K-1, K-1 ) / D
  616:                   D12 = A( K-1, K ) / D
  617:                   TT = ONE / ( D11*D22-ONE )
  618: *
  619:                   DO 30 J = K - 2, 1, -1
  620: *
  621: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  622: *
  623:                      WKM1 = TT*( D11*A( J, K-1 )-DCONJG( D12 )*
  624:      $                      A( J, K ) )
  625:                      WK = TT*( D22*A( J, K )-D12*A( J, K-1 ) )
  626: *
  627: *                    Perform a rank-2 update of A(1:k-2,1:k-2)
  628: *
  629:                      DO 20 I = J, 1, -1
  630:                         A( I, J ) = A( I, J ) -
  631:      $                              ( A( I, K ) / D )*DCONJG( WK ) -
  632:      $                              ( A( I, K-1 ) / D )*DCONJG( WKM1 )
  633:    20                CONTINUE
  634: *
  635: *                    Store U(k) and U(k-1) in cols k and k-1 for row J
  636: *
  637:                      A( J, K ) = WK / D
  638:                      A( J, K-1 ) = WKM1 / D
  639: *                    (*) Make sure that diagonal element of pivot is real
  640:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), ZERO )
  641: *
  642:    30             CONTINUE
  643: *
  644:                END IF
  645: *
  646: *              Copy superdiagonal elements of D(K) to E(K) and
  647: *              ZERO out superdiagonal entry of A
  648: *
  649:                E( K ) = A( K-1, K )
  650:                E( K-1 ) = CZERO
  651:                A( K-1, K ) = CZERO
  652: *
  653:             END IF
  654: *
  655: *           End column K is nonsingular
  656: *
  657:          END IF
  658: *
  659: *        Store details of the interchanges in IPIV
  660: *
  661:          IF( KSTEP.EQ.1 ) THEN
  662:             IPIV( K ) = KP
  663:          ELSE
  664:             IPIV( K ) = -P
  665:             IPIV( K-1 ) = -KP
  666:          END IF
  667: *
  668: *        Decrease K and return to the start of the main loop
  669: *
  670:          K = K - KSTEP
  671:          GO TO 10
  672: *
  673:    34    CONTINUE
  674: *
  675:       ELSE
  676: *
  677: *        Factorize A as L*D*L**H using the lower triangle of A
  678: *
  679: *        Initilize the unused last entry of the subdiagonal array E.
  680: *
  681:          E( N ) = CZERO
  682: *
  683: *        K is the main loop index, increasing from 1 to N in steps of
  684: *        1 or 2
  685: *
  686:          K = 1
  687:    40    CONTINUE
  688: *
  689: *        If K > N, exit from loop
  690: *
  691:          IF( K.GT.N )
  692:      $      GO TO 64
  693:          KSTEP = 1
  694:          P = K
  695: *
  696: *        Determine rows and columns to be interchanged and whether
  697: *        a 1-by-1 or 2-by-2 pivot block will be used
  698: *
  699:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  700: *
  701: *        IMAX is the row-index of the largest off-diagonal element in
  702: *        column K, and COLMAX is its absolute value.
  703: *        Determine both COLMAX and IMAX.
  704: *
  705:          IF( K.LT.N ) THEN
  706:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  707:             COLMAX = CABS1( A( IMAX, K ) )
  708:          ELSE
  709:             COLMAX = ZERO
  710:          END IF
  711: *
  712:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  713: *
  714: *           Column K is zero or underflow: set INFO and continue
  715: *
  716:             IF( INFO.EQ.0 )
  717:      $         INFO = K
  718:             KP = K
  719:             A( K, K ) = DBLE( A( K, K ) )
  720: *
  721: *           Set E( K ) to zero
  722: *
  723:             IF( K.LT.N )
  724:      $         E( K ) = CZERO
  725: *
  726:          ELSE
  727: *
  728: *           ============================================================
  729: *
  730: *           BEGIN pivot search
  731: *
  732: *           Case(1)
  733: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  734: *           (used to handle NaN and Inf)
  735: *
  736:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  737: *
  738: *              no interchange, use 1-by-1 pivot block
  739: *
  740:                KP = K
  741: *
  742:             ELSE
  743: *
  744:                DONE = .FALSE.
  745: *
  746: *              Loop until pivot found
  747: *
  748:    42          CONTINUE
  749: *
  750: *                 BEGIN pivot search loop body
  751: *
  752: *
  753: *                 JMAX is the column-index of the largest off-diagonal
  754: *                 element in row IMAX, and ROWMAX is its absolute value.
  755: *                 Determine both ROWMAX and JMAX.
  756: *
  757:                   IF( IMAX.NE.K ) THEN
  758:                      JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  759:                      ROWMAX = CABS1( A( IMAX, JMAX ) )
  760:                   ELSE
  761:                      ROWMAX = ZERO
  762:                   END IF
  763: *
  764:                   IF( IMAX.LT.N ) THEN
  765:                      ITEMP = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ),
  766:      $                                     1 )
  767:                      DTEMP = CABS1( A( ITEMP, IMAX ) )
  768:                      IF( DTEMP.GT.ROWMAX ) THEN
  769:                         ROWMAX = DTEMP
  770:                         JMAX = ITEMP
  771:                      END IF
  772:                   END IF
  773: *
  774: *                 Case(2)
  775: *                 Equivalent to testing for
  776: *                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
  777: *                 (used to handle NaN and Inf)
  778: *
  779:                   IF( .NOT.( ABS( DBLE( A( IMAX, IMAX ) ) )
  780:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  781: *
  782: *                    interchange rows and columns K and IMAX,
  783: *                    use 1-by-1 pivot block
  784: *
  785:                      KP = IMAX
  786:                      DONE = .TRUE.
  787: *
  788: *                 Case(3)
  789: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  790: *                 (used to handle NaN and Inf)
  791: *
  792:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  793:      $            THEN
  794: *
  795: *                    interchange rows and columns K+1 and IMAX,
  796: *                    use 2-by-2 pivot block
  797: *
  798:                      KP = IMAX
  799:                      KSTEP = 2
  800:                      DONE = .TRUE.
  801: *
  802: *                 Case(4)
  803:                   ELSE
  804: *
  805: *                    Pivot not found: set params and repeat
  806: *
  807:                      P = IMAX
  808:                      COLMAX = ROWMAX
  809:                      IMAX = JMAX
  810:                   END IF
  811: *
  812: *
  813: *                 END pivot search loop body
  814: *
  815:                IF( .NOT.DONE ) GOTO 42
  816: *
  817:             END IF
  818: *
  819: *           END pivot search
  820: *
  821: *           ============================================================
  822: *
  823: *           KK is the column of A where pivoting step stopped
  824: *
  825:             KK = K + KSTEP - 1
  826: *
  827: *           For only a 2x2 pivot, interchange rows and columns K and P
  828: *           in the trailing submatrix A(k:n,k:n)
  829: *
  830:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  831: *              (1) Swap columnar parts
  832:                IF( P.LT.N )
  833:      $            CALL ZSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  834: *              (2) Swap and conjugate middle parts
  835:                DO 44 J = K + 1, P - 1
  836:                   T = DCONJG( A( J, K ) )
  837:                   A( J, K ) = DCONJG( A( P, J ) )
  838:                   A( P, J ) = T
  839:    44          CONTINUE
  840: *              (3) Swap and conjugate corner elements at row-col interserction
  841:                A( P, K ) = DCONJG( A( P, K ) )
  842: *              (4) Swap diagonal elements at row-col intersection
  843:                R1 = DBLE( A( K, K ) )
  844:                A( K, K ) = DBLE( A( P, P ) )
  845:                A( P, P ) = R1
  846: *
  847: *              Convert lower triangle of A into L form by applying
  848: *              the interchanges in columns 1:k-1.
  849: *
  850:                IF ( K.GT.1 )
  851:      $            CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
  852: *
  853:             END IF
  854: *
  855: *           For both 1x1 and 2x2 pivots, interchange rows and
  856: *           columns KK and KP in the trailing submatrix A(k:n,k:n)
  857: *
  858:             IF( KP.NE.KK ) THEN
  859: *              (1) Swap columnar parts
  860:                IF( KP.LT.N )
  861:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  862: *              (2) Swap and conjugate middle parts
  863:                DO 45 J = KK + 1, KP - 1
  864:                   T = DCONJG( A( J, KK ) )
  865:                   A( J, KK ) = DCONJG( A( KP, J ) )
  866:                   A( KP, J ) = T
  867:    45          CONTINUE
  868: *              (3) Swap and conjugate corner elements at row-col interserction
  869:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  870: *              (4) Swap diagonal elements at row-col intersection
  871:                R1 = DBLE( A( KK, KK ) )
  872:                A( KK, KK ) = DBLE( A( KP, KP ) )
  873:                A( KP, KP ) = R1
  874: *
  875:                IF( KSTEP.EQ.2 ) THEN
  876: *                 (*) Make sure that diagonal element of pivot is real
  877:                   A( K, K ) = DBLE( A( K, K ) )
  878: *                 (5) Swap row elements
  879:                   T = A( K+1, K )
  880:                   A( K+1, K ) = A( KP, K )
  881:                   A( KP, K ) = T
  882:                END IF
  883: *
  884: *              Convert lower triangle of A into L form by applying
  885: *              the interchanges in columns 1:k-1.
  886: *
  887:                IF ( K.GT.1 )
  888:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  889: *
  890:             ELSE
  891: *              (*) Make sure that diagonal element of pivot is real
  892:                A( K, K ) = DBLE( A( K, K ) )
  893:                IF( KSTEP.EQ.2 )
  894:      $            A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
  895:             END IF
  896: *
  897: *           Update the trailing submatrix
  898: *
  899:             IF( KSTEP.EQ.1 ) THEN
  900: *
  901: *              1-by-1 pivot block D(k): column k of A now holds
  902: *
  903: *              W(k) = L(k)*D(k),
  904: *
  905: *              where L(k) is the k-th column of L
  906: *
  907:                IF( K.LT.N ) THEN
  908: *
  909: *                 Perform a rank-1 update of A(k+1:n,k+1:n) and
  910: *                 store L(k) in column k
  911: *
  912: *                 Handle division by a small number
  913: *
  914:                   IF( ABS( DBLE( A( K, K ) ) ).GE.SFMIN ) THEN
  915: *
  916: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  917: *                    A := A - L(k)*D(k)*L(k)**T
  918: *                       = A - W(k)*(1/D(k))*W(k)**T
  919: *
  920:                      D11 = ONE / DBLE( A( K, K ) )
  921:                      CALL ZHER( UPLO, N-K, -D11, A( K+1, K ), 1,
  922:      $                          A( K+1, K+1 ), LDA )
  923: *
  924: *                    Store L(k) in column k
  925: *
  926:                      CALL ZDSCAL( N-K, D11, A( K+1, K ), 1 )
  927:                   ELSE
  928: *
  929: *                    Store L(k) in column k
  930: *
  931:                      D11 = DBLE( A( K, K ) )
  932:                      DO 46 II = K + 1, N
  933:                         A( II, K ) = A( II, K ) / D11
  934:    46                CONTINUE
  935: *
  936: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  937: *                    A := A - L(k)*D(k)*L(k)**T
  938: *                       = A - W(k)*(1/D(k))*W(k)**T
  939: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  940: *
  941:                      CALL ZHER( UPLO, N-K, -D11, A( K+1, K ), 1,
  942:      $                          A( K+1, K+1 ), LDA )
  943:                   END IF
  944: *
  945: *                 Store the subdiagonal element of D in array E
  946: *
  947:                   E( K ) = CZERO
  948: *
  949:                END IF
  950: *
  951:             ELSE
  952: *
  953: *              2-by-2 pivot block D(k): columns k and k+1 now hold
  954: *
  955: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  956: *
  957: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  958: *              of L
  959: *
  960: *
  961: *              Perform a rank-2 update of A(k+2:n,k+2:n) as
  962: *
  963: *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
  964: *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
  965: *
  966: *              and store L(k) and L(k+1) in columns k and k+1
  967: *
  968:                IF( K.LT.N-1 ) THEN
  969: *                 D = |A21|
  970:                   D = DLAPY2( DBLE( A( K+1, K ) ),
  971:      $                DIMAG( A( K+1, K ) ) )
  972:                   D11 = DBLE( A( K+1, K+1 ) ) / D
  973:                   D22 = DBLE( A( K, K ) ) / D
  974:                   D21 = A( K+1, K ) / D
  975:                   TT = ONE / ( D11*D22-ONE )
  976: *
  977:                   DO 60 J = K + 2, N
  978: *
  979: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  980: *
  981:                      WK = TT*( D11*A( J, K )-D21*A( J, K+1 ) )
  982:                      WKP1 = TT*( D22*A( J, K+1 )-DCONJG( D21 )*
  983:      $                      A( J, K ) )
  984: *
  985: *                    Perform a rank-2 update of A(k+2:n,k+2:n)
  986: *
  987:                      DO 50 I = J, N
  988:                         A( I, J ) = A( I, J ) -
  989:      $                              ( A( I, K ) / D )*DCONJG( WK ) -
  990:      $                              ( A( I, K+1 ) / D )*DCONJG( WKP1 )
  991:    50                CONTINUE
  992: *
  993: *                    Store L(k) and L(k+1) in cols k and k+1 for row J
  994: *
  995:                      A( J, K ) = WK / D
  996:                      A( J, K+1 ) = WKP1 / D
  997: *                    (*) Make sure that diagonal element of pivot is real
  998:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), ZERO )
  999: *
 1000:    60             CONTINUE
 1001: *
 1002:                END IF
 1003: *
 1004: *              Copy subdiagonal elements of D(K) to E(K) and
 1005: *              ZERO out subdiagonal entry of A
 1006: *
 1007:                E( K ) = A( K+1, K )
 1008:                E( K+1 ) = CZERO
 1009:                A( K+1, K ) = CZERO
 1010: *
 1011:             END IF
 1012: *
 1013: *           End column K is nonsingular
 1014: *
 1015:          END IF
 1016: *
 1017: *        Store details of the interchanges in IPIV
 1018: *
 1019:          IF( KSTEP.EQ.1 ) THEN
 1020:             IPIV( K ) = KP
 1021:          ELSE
 1022:             IPIV( K ) = -P
 1023:             IPIV( K+1 ) = -KP
 1024:          END IF
 1025: *
 1026: *        Increase K and return to the start of the main loop
 1027: *
 1028:          K = K + KSTEP
 1029:          GO TO 40
 1030: *
 1031:    64    CONTINUE
 1032: *
 1033:       END IF
 1034: *
 1035:       RETURN
 1036: *
 1037: *     End of ZHETF2_RK
 1038: *
 1039:       END

CVSweb interface <joel.bertrand@systella.fr>