File:  [local] / rpl / lapack / lapack / zhetf2.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:05 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, LDA, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         A( LDA, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZHETF2 computes the factorization of a complex Hermitian matrix A
   21: *  using the Bunch-Kaufman diagonal pivoting method:
   22: *
   23: *     A = U*D*U'  or  A = L*D*L'
   24: *
   25: *  where U (or L) is a product of permutation and unit upper (lower)
   26: *  triangular matrices, U' is the conjugate transpose of U, and D is
   27: *  Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   28: *
   29: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  UPLO    (input) CHARACTER*1
   35: *          Specifies whether the upper or lower triangular part of the
   36: *          Hermitian matrix A is stored:
   37: *          = 'U':  Upper triangular
   38: *          = 'L':  Lower triangular
   39: *
   40: *  N       (input) INTEGER
   41: *          The order of the matrix A.  N >= 0.
   42: *
   43: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   44: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   45: *          n-by-n upper triangular part of A contains the upper
   46: *          triangular part of the matrix A, and the strictly lower
   47: *          triangular part of A is not referenced.  If UPLO = 'L', the
   48: *          leading n-by-n lower triangular part of A contains the lower
   49: *          triangular part of the matrix A, and the strictly upper
   50: *          triangular part of A is not referenced.
   51: *
   52: *          On exit, the block diagonal matrix D and the multipliers used
   53: *          to obtain the factor U or L (see below for further details).
   54: *
   55: *  LDA     (input) INTEGER
   56: *          The leading dimension of the array A.  LDA >= max(1,N).
   57: *
   58: *  IPIV    (output) INTEGER array, dimension (N)
   59: *          Details of the interchanges and the block structure of D.
   60: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   61: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
   62: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   63: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   64: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   65: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   66: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   67: *
   68: *  INFO    (output) INTEGER
   69: *          = 0: successful exit
   70: *          < 0: if INFO = -k, the k-th argument had an illegal value
   71: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
   72: *               has been completed, but the block diagonal matrix D is
   73: *               exactly singular, and division by zero will occur if it
   74: *               is used to solve a system of equations.
   75: *
   76: *  Further Details
   77: *  ===============
   78: *
   79: *  09-29-06 - patch from
   80: *    Bobby Cheng, MathWorks
   81: *
   82: *    Replace l.210 and l.393
   83: *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
   84: *    by
   85: *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
   86: *
   87: *  01-01-96 - Based on modifications by
   88: *    J. Lewis, Boeing Computer Services Company
   89: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
   90: *
   91: *  If UPLO = 'U', then A = U*D*U', where
   92: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
   93: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
   94: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
   95: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
   96: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
   97: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
   98: *
   99: *             (   I    v    0   )   k-s
  100: *     U(k) =  (   0    I    0   )   s
  101: *             (   0    0    I   )   n-k
  102: *                k-s   s   n-k
  103: *
  104: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  105: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  106: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  107: *
  108: *  If UPLO = 'L', then A = L*D*L', where
  109: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  110: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  111: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  112: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  113: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  114: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  115: *
  116: *             (   I    0     0   )  k-1
  117: *     L(k) =  (   0    I     0   )  s
  118: *             (   0    v     I   )  n-k-s+1
  119: *                k-1   s  n-k-s+1
  120: *
  121: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  122: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  123: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  124: *
  125: *  =====================================================================
  126: *
  127: *     .. Parameters ..
  128:       DOUBLE PRECISION   ZERO, ONE
  129:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  130:       DOUBLE PRECISION   EIGHT, SEVTEN
  131:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  132: *     ..
  133: *     .. Local Scalars ..
  134:       LOGICAL            UPPER
  135:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
  136:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  137:      $                   TT
  138:       COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, ZDUM
  139: *     ..
  140: *     .. External Functions ..
  141:       LOGICAL            LSAME, DISNAN
  142:       INTEGER            IZAMAX
  143:       DOUBLE PRECISION   DLAPY2
  144:       EXTERNAL           LSAME, IZAMAX, DLAPY2, DISNAN
  145: *     ..
  146: *     .. External Subroutines ..
  147:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZSWAP
  148: *     ..
  149: *     .. Intrinsic Functions ..
  150:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  151: *     ..
  152: *     .. Statement Functions ..
  153:       DOUBLE PRECISION   CABS1
  154: *     ..
  155: *     .. Statement Function definitions ..
  156:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  157: *     ..
  158: *     .. Executable Statements ..
  159: *
  160: *     Test the input parameters.
  161: *
  162:       INFO = 0
  163:       UPPER = LSAME( UPLO, 'U' )
  164:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  165:          INFO = -1
  166:       ELSE IF( N.LT.0 ) THEN
  167:          INFO = -2
  168:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  169:          INFO = -4
  170:       END IF
  171:       IF( INFO.NE.0 ) THEN
  172:          CALL XERBLA( 'ZHETF2', -INFO )
  173:          RETURN
  174:       END IF
  175: *
  176: *     Initialize ALPHA for use in choosing pivot block size.
  177: *
  178:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  179: *
  180:       IF( UPPER ) THEN
  181: *
  182: *        Factorize A as U*D*U' using the upper triangle of A
  183: *
  184: *        K is the main loop index, decreasing from N to 1 in steps of
  185: *        1 or 2
  186: *
  187:          K = N
  188:    10    CONTINUE
  189: *
  190: *        If K < 1, exit from loop
  191: *
  192:          IF( K.LT.1 )
  193:      $      GO TO 90
  194:          KSTEP = 1
  195: *
  196: *        Determine rows and columns to be interchanged and whether
  197: *        a 1-by-1 or 2-by-2 pivot block will be used
  198: *
  199:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  200: *
  201: *        IMAX is the row-index of the largest off-diagonal element in
  202: *        column K, and COLMAX is its absolute value
  203: *
  204:          IF( K.GT.1 ) THEN
  205:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  206:             COLMAX = CABS1( A( IMAX, K ) )
  207:          ELSE
  208:             COLMAX = ZERO
  209:          END IF
  210: *
  211:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  212: *
  213: *           Column K is zero or contains a NaN: set INFO and continue
  214: *
  215:             IF( INFO.EQ.0 )
  216:      $         INFO = K
  217:             KP = K
  218:             A( K, K ) = DBLE( A( K, K ) )
  219:          ELSE
  220:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  221: *
  222: *              no interchange, use 1-by-1 pivot block
  223: *
  224:                KP = K
  225:             ELSE
  226: *
  227: *              JMAX is the column-index of the largest off-diagonal
  228: *              element in row IMAX, and ROWMAX is its absolute value
  229: *
  230:                JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  231:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  232:                IF( IMAX.GT.1 ) THEN
  233:                   JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  234:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  235:                END IF
  236: *
  237:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  238: *
  239: *                 no interchange, use 1-by-1 pivot block
  240: *
  241:                   KP = K
  242:                ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  243:      $                   THEN
  244: *
  245: *                 interchange rows and columns K and IMAX, use 1-by-1
  246: *                 pivot block
  247: *
  248:                   KP = IMAX
  249:                ELSE
  250: *
  251: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  252: *                 pivot block
  253: *
  254:                   KP = IMAX
  255:                   KSTEP = 2
  256:                END IF
  257:             END IF
  258: *
  259:             KK = K - KSTEP + 1
  260:             IF( KP.NE.KK ) THEN
  261: *
  262: *              Interchange rows and columns KK and KP in the leading
  263: *              submatrix A(1:k,1:k)
  264: *
  265:                CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  266:                DO 20 J = KP + 1, KK - 1
  267:                   T = DCONJG( A( J, KK ) )
  268:                   A( J, KK ) = DCONJG( A( KP, J ) )
  269:                   A( KP, J ) = T
  270:    20          CONTINUE
  271:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  272:                R1 = DBLE( A( KK, KK ) )
  273:                A( KK, KK ) = DBLE( A( KP, KP ) )
  274:                A( KP, KP ) = R1
  275:                IF( KSTEP.EQ.2 ) THEN
  276:                   A( K, K ) = DBLE( A( K, K ) )
  277:                   T = A( K-1, K )
  278:                   A( K-1, K ) = A( KP, K )
  279:                   A( KP, K ) = T
  280:                END IF
  281:             ELSE
  282:                A( K, K ) = DBLE( A( K, K ) )
  283:                IF( KSTEP.EQ.2 )
  284:      $            A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
  285:             END IF
  286: *
  287: *           Update the leading submatrix
  288: *
  289:             IF( KSTEP.EQ.1 ) THEN
  290: *
  291: *              1-by-1 pivot block D(k): column k now holds
  292: *
  293: *              W(k) = U(k)*D(k)
  294: *
  295: *              where U(k) is the k-th column of U
  296: *
  297: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  298: *
  299: *              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
  300: *
  301:                R1 = ONE / DBLE( A( K, K ) )
  302:                CALL ZHER( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  303: *
  304: *              Store U(k) in column k
  305: *
  306:                CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  307:             ELSE
  308: *
  309: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  310: *
  311: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  312: *
  313: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  314: *              of U
  315: *
  316: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  317: *
  318: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
  319: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
  320: *
  321:                IF( K.GT.2 ) THEN
  322: *
  323:                   D = DLAPY2( DBLE( A( K-1, K ) ),
  324:      $                DIMAG( A( K-1, K ) ) )
  325:                   D22 = DBLE( A( K-1, K-1 ) ) / D
  326:                   D11 = DBLE( A( K, K ) ) / D
  327:                   TT = ONE / ( D11*D22-ONE )
  328:                   D12 = A( K-1, K ) / D
  329:                   D = TT / D
  330: *
  331:                   DO 40 J = K - 2, 1, -1
  332:                      WKM1 = D*( D11*A( J, K-1 )-DCONJG( D12 )*
  333:      $                      A( J, K ) )
  334:                      WK = D*( D22*A( J, K )-D12*A( J, K-1 ) )
  335:                      DO 30 I = J, 1, -1
  336:                         A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  337:      $                              A( I, K-1 )*DCONJG( WKM1 )
  338:    30                CONTINUE
  339:                      A( J, K ) = WK
  340:                      A( J, K-1 ) = WKM1
  341:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  342:    40             CONTINUE
  343: *
  344:                END IF
  345: *
  346:             END IF
  347:          END IF
  348: *
  349: *        Store details of the interchanges in IPIV
  350: *
  351:          IF( KSTEP.EQ.1 ) THEN
  352:             IPIV( K ) = KP
  353:          ELSE
  354:             IPIV( K ) = -KP
  355:             IPIV( K-1 ) = -KP
  356:          END IF
  357: *
  358: *        Decrease K and return to the start of the main loop
  359: *
  360:          K = K - KSTEP
  361:          GO TO 10
  362: *
  363:       ELSE
  364: *
  365: *        Factorize A as L*D*L' using the lower triangle of A
  366: *
  367: *        K is the main loop index, increasing from 1 to N in steps of
  368: *        1 or 2
  369: *
  370:          K = 1
  371:    50    CONTINUE
  372: *
  373: *        If K > N, exit from loop
  374: *
  375:          IF( K.GT.N )
  376:      $      GO TO 90
  377:          KSTEP = 1
  378: *
  379: *        Determine rows and columns to be interchanged and whether
  380: *        a 1-by-1 or 2-by-2 pivot block will be used
  381: *
  382:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  383: *
  384: *        IMAX is the row-index of the largest off-diagonal element in
  385: *        column K, and COLMAX is its absolute value
  386: *
  387:          IF( K.LT.N ) THEN
  388:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  389:             COLMAX = CABS1( A( IMAX, K ) )
  390:          ELSE
  391:             COLMAX = ZERO
  392:          END IF
  393: *
  394:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  395: *
  396: *           Column K is zero or contains a NaN: set INFO and continue
  397: *
  398:             IF( INFO.EQ.0 )
  399:      $         INFO = K
  400:             KP = K
  401:             A( K, K ) = DBLE( A( K, K ) )
  402:          ELSE
  403:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  404: *
  405: *              no interchange, use 1-by-1 pivot block
  406: *
  407:                KP = K
  408:             ELSE
  409: *
  410: *              JMAX is the column-index of the largest off-diagonal
  411: *              element in row IMAX, and ROWMAX is its absolute value
  412: *
  413:                JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  414:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  415:                IF( IMAX.LT.N ) THEN
  416:                   JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  417:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  418:                END IF
  419: *
  420:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  421: *
  422: *                 no interchange, use 1-by-1 pivot block
  423: *
  424:                   KP = K
  425:                ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  426:      $                   THEN
  427: *
  428: *                 interchange rows and columns K and IMAX, use 1-by-1
  429: *                 pivot block
  430: *
  431:                   KP = IMAX
  432:                ELSE
  433: *
  434: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  435: *                 pivot block
  436: *
  437:                   KP = IMAX
  438:                   KSTEP = 2
  439:                END IF
  440:             END IF
  441: *
  442:             KK = K + KSTEP - 1
  443:             IF( KP.NE.KK ) THEN
  444: *
  445: *              Interchange rows and columns KK and KP in the trailing
  446: *              submatrix A(k:n,k:n)
  447: *
  448:                IF( KP.LT.N )
  449:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  450:                DO 60 J = KK + 1, KP - 1
  451:                   T = DCONJG( A( J, KK ) )
  452:                   A( J, KK ) = DCONJG( A( KP, J ) )
  453:                   A( KP, J ) = T
  454:    60          CONTINUE
  455:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  456:                R1 = DBLE( A( KK, KK ) )
  457:                A( KK, KK ) = DBLE( A( KP, KP ) )
  458:                A( KP, KP ) = R1
  459:                IF( KSTEP.EQ.2 ) THEN
  460:                   A( K, K ) = DBLE( A( K, K ) )
  461:                   T = A( K+1, K )
  462:                   A( K+1, K ) = A( KP, K )
  463:                   A( KP, K ) = T
  464:                END IF
  465:             ELSE
  466:                A( K, K ) = DBLE( A( K, K ) )
  467:                IF( KSTEP.EQ.2 )
  468:      $            A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
  469:             END IF
  470: *
  471: *           Update the trailing submatrix
  472: *
  473:             IF( KSTEP.EQ.1 ) THEN
  474: *
  475: *              1-by-1 pivot block D(k): column k now holds
  476: *
  477: *              W(k) = L(k)*D(k)
  478: *
  479: *              where L(k) is the k-th column of L
  480: *
  481:                IF( K.LT.N ) THEN
  482: *
  483: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  484: *
  485: *                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
  486: *
  487:                   R1 = ONE / DBLE( A( K, K ) )
  488:                   CALL ZHER( UPLO, N-K, -R1, A( K+1, K ), 1,
  489:      $                       A( K+1, K+1 ), LDA )
  490: *
  491: *                 Store L(k) in column K
  492: *
  493:                   CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  494:                END IF
  495:             ELSE
  496: *
  497: *              2-by-2 pivot block D(k)
  498: *
  499:                IF( K.LT.N-1 ) THEN
  500: *
  501: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  502: *
  503: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )'
  504: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )'
  505: *
  506: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  507: *                 columns of L
  508: *
  509:                   D = DLAPY2( DBLE( A( K+1, K ) ),
  510:      $                DIMAG( A( K+1, K ) ) )
  511:                   D11 = DBLE( A( K+1, K+1 ) ) / D
  512:                   D22 = DBLE( A( K, K ) ) / D
  513:                   TT = ONE / ( D11*D22-ONE )
  514:                   D21 = A( K+1, K ) / D
  515:                   D = TT / D
  516: *
  517:                   DO 80 J = K + 2, N
  518:                      WK = D*( D11*A( J, K )-D21*A( J, K+1 ) )
  519:                      WKP1 = D*( D22*A( J, K+1 )-DCONJG( D21 )*
  520:      $                      A( J, K ) )
  521:                      DO 70 I = J, N
  522:                         A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  523:      $                              A( I, K+1 )*DCONJG( WKP1 )
  524:    70                CONTINUE
  525:                      A( J, K ) = WK
  526:                      A( J, K+1 ) = WKP1
  527:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  528:    80             CONTINUE
  529:                END IF
  530:             END IF
  531:          END IF
  532: *
  533: *        Store details of the interchanges in IPIV
  534: *
  535:          IF( KSTEP.EQ.1 ) THEN
  536:             IPIV( K ) = KP
  537:          ELSE
  538:             IPIV( K ) = -KP
  539:             IPIV( K+1 ) = -KP
  540:          END IF
  541: *
  542: *        Increase K and return to the start of the main loop
  543: *
  544:          K = K + KSTEP
  545:          GO TO 50
  546: *
  547:       END IF
  548: *
  549:    90 CONTINUE
  550:       RETURN
  551: *
  552: *     End of ZHETF2
  553: *
  554:       END

CVSweb interface <joel.bertrand@systella.fr>