File:  [local] / rpl / lapack / lapack / zhetf2.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:24 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm, calling Level 2 BLAS).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETF2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHETF2 computes the factorization of a complex Hermitian matrix A
   39: *> using the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**H  or  A = L*D*L**H
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**H is the conjugate transpose of U, and D is
   45: *> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          Hermitian matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>
   94: *>          If UPLO = 'U':
   95: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   96: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
   97: *>
   98: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
   99: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  100: *>             is a 2-by-2 diagonal block.
  101: *>
  102: *>          If UPLO = 'L':
  103: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  104: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  105: *>
  106: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  107: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  108: *>             is a 2-by-2 diagonal block.
  109: *> \endverbatim
  110: *>
  111: *> \param[out] INFO
  112: *> \verbatim
  113: *>          INFO is INTEGER
  114: *>          = 0: successful exit
  115: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  116: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  117: *>               has been completed, but the block diagonal matrix D is
  118: *>               exactly singular, and division by zero will occur if it
  119: *>               is used to solve a system of equations.
  120: *> \endverbatim
  121: *
  122: *  Authors:
  123: *  ========
  124: *
  125: *> \author Univ. of Tennessee
  126: *> \author Univ. of California Berkeley
  127: *> \author Univ. of Colorado Denver
  128: *> \author NAG Ltd.
  129: *
  130: *> \ingroup complex16HEcomputational
  131: *
  132: *> \par Further Details:
  133: *  =====================
  134: *>
  135: *> \verbatim
  136: *>
  137: *>  If UPLO = 'U', then A = U*D*U**H, where
  138: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  139: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  140: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  141: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  142: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  143: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  144: *>
  145: *>             (   I    v    0   )   k-s
  146: *>     U(k) =  (   0    I    0   )   s
  147: *>             (   0    0    I   )   n-k
  148: *>                k-s   s   n-k
  149: *>
  150: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  151: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  152: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  153: *>
  154: *>  If UPLO = 'L', then A = L*D*L**H, where
  155: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  156: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  157: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  158: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  159: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  160: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  161: *>
  162: *>             (   I    0     0   )  k-1
  163: *>     L(k) =  (   0    I     0   )  s
  164: *>             (   0    v     I   )  n-k-s+1
  165: *>                k-1   s  n-k-s+1
  166: *>
  167: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  168: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  169: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  170: *> \endverbatim
  171: *
  172: *> \par Contributors:
  173: *  ==================
  174: *>
  175: *> \verbatim
  176: *>  09-29-06 - patch from
  177: *>    Bobby Cheng, MathWorks
  178: *>
  179: *>    Replace l.210 and l.393
  180: *>         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  181: *>    by
  182: *>         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  183: *>
  184: *>  01-01-96 - Based on modifications by
  185: *>    J. Lewis, Boeing Computer Services Company
  186: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  187: *> \endverbatim
  188: *
  189: *  =====================================================================
  190:       SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
  191: *
  192: *  -- LAPACK computational routine --
  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195: *
  196: *     .. Scalar Arguments ..
  197:       CHARACTER          UPLO
  198:       INTEGER            INFO, LDA, N
  199: *     ..
  200: *     .. Array Arguments ..
  201:       INTEGER            IPIV( * )
  202:       COMPLEX*16         A( LDA, * )
  203: *     ..
  204: *
  205: *  =====================================================================
  206: *
  207: *     .. Parameters ..
  208:       DOUBLE PRECISION   ZERO, ONE
  209:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  210:       DOUBLE PRECISION   EIGHT, SEVTEN
  211:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  212: *     ..
  213: *     .. Local Scalars ..
  214:       LOGICAL            UPPER
  215:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
  216:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  217:      $                   TT
  218:       COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, ZDUM
  219: *     ..
  220: *     .. External Functions ..
  221:       LOGICAL            LSAME, DISNAN
  222:       INTEGER            IZAMAX
  223:       DOUBLE PRECISION   DLAPY2
  224:       EXTERNAL           LSAME, IZAMAX, DLAPY2, DISNAN
  225: *     ..
  226: *     .. External Subroutines ..
  227:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZSWAP
  228: *     ..
  229: *     .. Intrinsic Functions ..
  230:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  231: *     ..
  232: *     .. Statement Functions ..
  233:       DOUBLE PRECISION   CABS1
  234: *     ..
  235: *     .. Statement Function definitions ..
  236:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  237: *     ..
  238: *     .. Executable Statements ..
  239: *
  240: *     Test the input parameters.
  241: *
  242:       INFO = 0
  243:       UPPER = LSAME( UPLO, 'U' )
  244:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  245:          INFO = -1
  246:       ELSE IF( N.LT.0 ) THEN
  247:          INFO = -2
  248:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  249:          INFO = -4
  250:       END IF
  251:       IF( INFO.NE.0 ) THEN
  252:          CALL XERBLA( 'ZHETF2', -INFO )
  253:          RETURN
  254:       END IF
  255: *
  256: *     Initialize ALPHA for use in choosing pivot block size.
  257: *
  258:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  259: *
  260:       IF( UPPER ) THEN
  261: *
  262: *        Factorize A as U*D*U**H using the upper triangle of A
  263: *
  264: *        K is the main loop index, decreasing from N to 1 in steps of
  265: *        1 or 2
  266: *
  267:          K = N
  268:    10    CONTINUE
  269: *
  270: *        If K < 1, exit from loop
  271: *
  272:          IF( K.LT.1 )
  273:      $      GO TO 90
  274:          KSTEP = 1
  275: *
  276: *        Determine rows and columns to be interchanged and whether
  277: *        a 1-by-1 or 2-by-2 pivot block will be used
  278: *
  279:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  280: *
  281: *        IMAX is the row-index of the largest off-diagonal element in
  282: *        column K, and COLMAX is its absolute value.
  283: *        Determine both COLMAX and IMAX.
  284: *
  285:          IF( K.GT.1 ) THEN
  286:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  287:             COLMAX = CABS1( A( IMAX, K ) )
  288:          ELSE
  289:             COLMAX = ZERO
  290:          END IF
  291: *
  292:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  293: *
  294: *           Column K is zero or underflow, or contains a NaN:
  295: *           set INFO and continue
  296: *
  297:             IF( INFO.EQ.0 )
  298:      $         INFO = K
  299:             KP = K
  300:             A( K, K ) = DBLE( A( K, K ) )
  301:          ELSE
  302: *
  303: *           ============================================================
  304: *
  305: *           Test for interchange
  306: *
  307:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  308: *
  309: *              no interchange, use 1-by-1 pivot block
  310: *
  311:                KP = K
  312:             ELSE
  313: *
  314: *              JMAX is the column-index of the largest off-diagonal
  315: *              element in row IMAX, and ROWMAX is its absolute value.
  316: *              Determine only ROWMAX.
  317: *
  318:                JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  319:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  320:                IF( IMAX.GT.1 ) THEN
  321:                   JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  322:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  323:                END IF
  324: *
  325:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  326: *
  327: *                 no interchange, use 1-by-1 pivot block
  328: *
  329:                   KP = K
  330: *
  331:                ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  332:      $                   THEN
  333: *
  334: *                 interchange rows and columns K and IMAX, use 1-by-1
  335: *                 pivot block
  336: *
  337:                   KP = IMAX
  338:                ELSE
  339: *
  340: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  341: *                 pivot block
  342: *
  343:                   KP = IMAX
  344:                   KSTEP = 2
  345:                END IF
  346: *
  347:             END IF
  348: *
  349: *           ============================================================
  350: *
  351:             KK = K - KSTEP + 1
  352:             IF( KP.NE.KK ) THEN
  353: *
  354: *              Interchange rows and columns KK and KP in the leading
  355: *              submatrix A(1:k,1:k)
  356: *
  357:                CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  358:                DO 20 J = KP + 1, KK - 1
  359:                   T = DCONJG( A( J, KK ) )
  360:                   A( J, KK ) = DCONJG( A( KP, J ) )
  361:                   A( KP, J ) = T
  362:    20          CONTINUE
  363:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  364:                R1 = DBLE( A( KK, KK ) )
  365:                A( KK, KK ) = DBLE( A( KP, KP ) )
  366:                A( KP, KP ) = R1
  367:                IF( KSTEP.EQ.2 ) THEN
  368:                   A( K, K ) = DBLE( A( K, K ) )
  369:                   T = A( K-1, K )
  370:                   A( K-1, K ) = A( KP, K )
  371:                   A( KP, K ) = T
  372:                END IF
  373:             ELSE
  374:                A( K, K ) = DBLE( A( K, K ) )
  375:                IF( KSTEP.EQ.2 )
  376:      $            A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
  377:             END IF
  378: *
  379: *           Update the leading submatrix
  380: *
  381:             IF( KSTEP.EQ.1 ) THEN
  382: *
  383: *              1-by-1 pivot block D(k): column k now holds
  384: *
  385: *              W(k) = U(k)*D(k)
  386: *
  387: *              where U(k) is the k-th column of U
  388: *
  389: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  390: *
  391: *              A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  392: *
  393:                R1 = ONE / DBLE( A( K, K ) )
  394:                CALL ZHER( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  395: *
  396: *              Store U(k) in column k
  397: *
  398:                CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  399:             ELSE
  400: *
  401: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  402: *
  403: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  404: *
  405: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  406: *              of U
  407: *
  408: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  409: *
  410: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  411: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  412: *
  413:                IF( K.GT.2 ) THEN
  414: *
  415:                   D = DLAPY2( DBLE( A( K-1, K ) ),
  416:      $                DIMAG( A( K-1, K ) ) )
  417:                   D22 = DBLE( A( K-1, K-1 ) ) / D
  418:                   D11 = DBLE( A( K, K ) ) / D
  419:                   TT = ONE / ( D11*D22-ONE )
  420:                   D12 = A( K-1, K ) / D
  421:                   D = TT / D
  422: *
  423:                   DO 40 J = K - 2, 1, -1
  424:                      WKM1 = D*( D11*A( J, K-1 )-DCONJG( D12 )*
  425:      $                      A( J, K ) )
  426:                      WK = D*( D22*A( J, K )-D12*A( J, K-1 ) )
  427:                      DO 30 I = J, 1, -1
  428:                         A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  429:      $                              A( I, K-1 )*DCONJG( WKM1 )
  430:    30                CONTINUE
  431:                      A( J, K ) = WK
  432:                      A( J, K-1 ) = WKM1
  433:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  434:    40             CONTINUE
  435: *
  436:                END IF
  437: *
  438:             END IF
  439:          END IF
  440: *
  441: *        Store details of the interchanges in IPIV
  442: *
  443:          IF( KSTEP.EQ.1 ) THEN
  444:             IPIV( K ) = KP
  445:          ELSE
  446:             IPIV( K ) = -KP
  447:             IPIV( K-1 ) = -KP
  448:          END IF
  449: *
  450: *        Decrease K and return to the start of the main loop
  451: *
  452:          K = K - KSTEP
  453:          GO TO 10
  454: *
  455:       ELSE
  456: *
  457: *        Factorize A as L*D*L**H using the lower triangle of A
  458: *
  459: *        K is the main loop index, increasing from 1 to N in steps of
  460: *        1 or 2
  461: *
  462:          K = 1
  463:    50    CONTINUE
  464: *
  465: *        If K > N, exit from loop
  466: *
  467:          IF( K.GT.N )
  468:      $      GO TO 90
  469:          KSTEP = 1
  470: *
  471: *        Determine rows and columns to be interchanged and whether
  472: *        a 1-by-1 or 2-by-2 pivot block will be used
  473: *
  474:          ABSAKK = ABS( DBLE( A( K, K ) ) )
  475: *
  476: *        IMAX is the row-index of the largest off-diagonal element in
  477: *        column K, and COLMAX is its absolute value.
  478: *        Determine both COLMAX and IMAX.
  479: *
  480:          IF( K.LT.N ) THEN
  481:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  482:             COLMAX = CABS1( A( IMAX, K ) )
  483:          ELSE
  484:             COLMAX = ZERO
  485:          END IF
  486: *
  487:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  488: *
  489: *           Column K is zero or underflow, or contains a NaN:
  490: *           set INFO and continue
  491: *
  492:             IF( INFO.EQ.0 )
  493:      $         INFO = K
  494:             KP = K
  495:             A( K, K ) = DBLE( A( K, K ) )
  496:          ELSE
  497: *
  498: *           ============================================================
  499: *
  500: *           Test for interchange
  501: *
  502:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  503: *
  504: *              no interchange, use 1-by-1 pivot block
  505: *
  506:                KP = K
  507:             ELSE
  508: *
  509: *              JMAX is the column-index of the largest off-diagonal
  510: *              element in row IMAX, and ROWMAX is its absolute value.
  511: *              Determine only ROWMAX.
  512: *
  513:                JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  514:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  515:                IF( IMAX.LT.N ) THEN
  516:                   JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  517:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  518:                END IF
  519: *
  520:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  521: *
  522: *                 no interchange, use 1-by-1 pivot block
  523: *
  524:                   KP = K
  525: *
  526:                ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  527:      $                   THEN
  528: *
  529: *                 interchange rows and columns K and IMAX, use 1-by-1
  530: *                 pivot block
  531: *
  532:                   KP = IMAX
  533:                ELSE
  534: *
  535: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  536: *                 pivot block
  537: *
  538:                   KP = IMAX
  539:                   KSTEP = 2
  540:                END IF
  541: *
  542:             END IF
  543: *
  544: *           ============================================================
  545: *
  546:             KK = K + KSTEP - 1
  547:             IF( KP.NE.KK ) THEN
  548: *
  549: *              Interchange rows and columns KK and KP in the trailing
  550: *              submatrix A(k:n,k:n)
  551: *
  552:                IF( KP.LT.N )
  553:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  554:                DO 60 J = KK + 1, KP - 1
  555:                   T = DCONJG( A( J, KK ) )
  556:                   A( J, KK ) = DCONJG( A( KP, J ) )
  557:                   A( KP, J ) = T
  558:    60          CONTINUE
  559:                A( KP, KK ) = DCONJG( A( KP, KK ) )
  560:                R1 = DBLE( A( KK, KK ) )
  561:                A( KK, KK ) = DBLE( A( KP, KP ) )
  562:                A( KP, KP ) = R1
  563:                IF( KSTEP.EQ.2 ) THEN
  564:                   A( K, K ) = DBLE( A( K, K ) )
  565:                   T = A( K+1, K )
  566:                   A( K+1, K ) = A( KP, K )
  567:                   A( KP, K ) = T
  568:                END IF
  569:             ELSE
  570:                A( K, K ) = DBLE( A( K, K ) )
  571:                IF( KSTEP.EQ.2 )
  572:      $            A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
  573:             END IF
  574: *
  575: *           Update the trailing submatrix
  576: *
  577:             IF( KSTEP.EQ.1 ) THEN
  578: *
  579: *              1-by-1 pivot block D(k): column k now holds
  580: *
  581: *              W(k) = L(k)*D(k)
  582: *
  583: *              where L(k) is the k-th column of L
  584: *
  585:                IF( K.LT.N ) THEN
  586: *
  587: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  588: *
  589: *                 A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  590: *
  591:                   R1 = ONE / DBLE( A( K, K ) )
  592:                   CALL ZHER( UPLO, N-K, -R1, A( K+1, K ), 1,
  593:      $                       A( K+1, K+1 ), LDA )
  594: *
  595: *                 Store L(k) in column K
  596: *
  597:                   CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  598:                END IF
  599:             ELSE
  600: *
  601: *              2-by-2 pivot block D(k)
  602: *
  603:                IF( K.LT.N-1 ) THEN
  604: *
  605: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  606: *
  607: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  608: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  609: *
  610: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  611: *                 columns of L
  612: *
  613:                   D = DLAPY2( DBLE( A( K+1, K ) ),
  614:      $                DIMAG( A( K+1, K ) ) )
  615:                   D11 = DBLE( A( K+1, K+1 ) ) / D
  616:                   D22 = DBLE( A( K, K ) ) / D
  617:                   TT = ONE / ( D11*D22-ONE )
  618:                   D21 = A( K+1, K ) / D
  619:                   D = TT / D
  620: *
  621:                   DO 80 J = K + 2, N
  622:                      WK = D*( D11*A( J, K )-D21*A( J, K+1 ) )
  623:                      WKP1 = D*( D22*A( J, K+1 )-DCONJG( D21 )*
  624:      $                      A( J, K ) )
  625:                      DO 70 I = J, N
  626:                         A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  627:      $                              A( I, K+1 )*DCONJG( WKP1 )
  628:    70                CONTINUE
  629:                      A( J, K ) = WK
  630:                      A( J, K+1 ) = WKP1
  631:                      A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  632:    80             CONTINUE
  633:                END IF
  634:             END IF
  635:          END IF
  636: *
  637: *        Store details of the interchanges in IPIV
  638: *
  639:          IF( KSTEP.EQ.1 ) THEN
  640:             IPIV( K ) = KP
  641:          ELSE
  642:             IPIV( K ) = -KP
  643:             IPIV( K+1 ) = -KP
  644:          END IF
  645: *
  646: *        Increase K and return to the start of the main loop
  647: *
  648:          K = K + KSTEP
  649:          GO TO 50
  650: *
  651:       END IF
  652: *
  653:    90 CONTINUE
  654:       RETURN
  655: *
  656: *     End of ZHETF2
  657: *
  658:       END

CVSweb interface <joel.bertrand@systella.fr>